The biosynthesis of cadaverine from lysine is an environmentally promising technology, that could contribute to a more sustainable approach to manufacturing bio-nylon 5X. However, the titer of biosynthesized cadaverine has still not reached a sufficient level for industrial production. A powerful green cell factory was developed to enhance cadaverine production by regulating lipopolysaccharide (LPS) genes and improving membrane permeability. Firstly, 10 LPS mutant strains were constructed and the effect on the growth was investigated. Then, the lysine decarboxylase (CadA) was overexpressed in 10 LPS mutant strains of Escherichia coli MG1655 and the ability to produce cadaverine was compared. Using 20.0 g L of L-lysine hydrochloride (L-lysine-HCl) as the substrate for the biotransformation reaction, Cad02 and Cad06 strains exhibited high production levels of cadaverine, with 8.95 g L and 7.55 g L respectively while the control strain Cad00 only 4.92 g L . Directed evolution of CadA was also used to improve its stability under alkaline conditions. The cadaverine production of the Cad02-M mutant stain increased by 1.86 times at pH 8.0. Finally, the production process was scaled up using recombinant whole cells as catalysts, achieving a high titer of 211 g L cadaverine (96.8%) by fed-batch bioconversion. This study demonstrates the potential role of LPS in enhancing the efficiency of mass transfer between substrate and enzymes in vivo by increasing cell permeability. The results indicate that the argumentation of cell permeability could not only significantly enhance the biotransformation efficiency of cadaverine, but also provide a universally applicable, straightforward, environment-friendly, and cost-effective method for the biosynthesis of other high-value chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202300642 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy.
The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore -14, Tamil Nadu, India.
This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!