Inflammatory sensory neuronopathies.

Rev Neurol (Paris)

Department of Neurology, University Hospital of Saint-Etienne, 42055 Saint-Étienne cedex, France. Electronic address:

Published: December 2024

Inflammatory sensory neuronopathies are rare disorders mediated by dysimmune mechanisms targeting sensory neurons in the dorsal root ganglia. They constitute a heterogeneous group of disorders with acute, subacute, or chronic courses, and occur with cancer, systemic autoimmune diseases, notably Sjögren syndrome, and viral infections but a noticeable proportion of them remains isolated. Identifying inflammatory sensory neuronopathies is crucial because they have the potential to be stabilized or even to improve with immunomodulatory or immunosuppressant treatments provided that the treatment is applied at an early stage of the disease, before a definitive degeneration of neurons. Biomarkers, and notably antibodies, are crucial for this early identification, which is the first step to develop therapeutic trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurol.2023.12.012DOI Listing

Publication Analysis

Top Keywords

inflammatory sensory
12
sensory neuronopathies
12
neuronopathies inflammatory
4
neuronopathies rare
4
rare disorders
4
disorders mediated
4
mediated dysimmune
4
dysimmune mechanisms
4
mechanisms targeting
4
targeting sensory
4

Similar Publications

Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties.

View Article and Find Full Text PDF

Provoked vulvodynia (PV) is the leading cause of vulvar pain and dyspareunia. The etiology of PV is multifactorial and remains poorly understood. PV is associated with a history of repeated vulvar inflammation and is often accompanied by sensory neuromodulation as a result of activation of the metabotropic glutamate receptor 5 (mGluR5) in the sensory nerve terminals.

View Article and Find Full Text PDF

High prevalence of facioscapulohumeral muscular dystrophy (FSHD) and inflammatory myopathies association: Is there an interplay?

J Neurol Sci

January 2025

Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France. Electronic address:

Introduction: Certain types of muscular dystrophy (MD), notably facioscapulohumeral muscular dystrophy (FSHD), exhibit muscle fiber necrosis with regeneration and a nonspecific inflammatory process. Although rare, the coexistence of MDs and autoimmune myositis has been observed. We hypothesized that, in some circumstances, FSHD may predispose individuals to myositis through muscle damage-induced autoantigen overexpression, contributing to an autoimmune response.

View Article and Find Full Text PDF

Enhancing Cordyceps Sinensis shelf life: The role of liquid nitrogen spray freezing in maintaining hypha structure and reducing metabolic degradation.

Food Chem

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Cordyceps sinensis (C. sinensis) is a valuable edible fungus, known for its therapeutic benefits, including immune enhancement and anti-inflammatory effects, making it an important component in nutritional applications. However, its delicate nature makes long-term storage challenging, with conventional freezing often leading to the loss of bioactive compounds.

View Article and Find Full Text PDF

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!