The benefit of intranasal brain derived neurotrophic factor (BDNF) treatment on cognitive function in a neonatal postnatal day 7 (P7) mouse model of hypoxic ischemia (HI) was explored. Intranasal delivery is attractive in that it can promote widespread distribution of BDNF within both the brain and spinal cord. In this study we evaluated the effectiveness of intranasal BDNF to improve cognitive recovery following HI. HI is induced via ligation of the right carotid artery followed by a 45-minute exposure to an 8% oxygen/ 92% nitrogen mixture in an enclosed chamber. Male and female pups were subjected to a 2-hour hypothermia in a temperature-controlled chamber as a standard of care. A solution of saline (control) or recombinant human BDNF (Harlan Laboratories) was administered with a Gilson pipette at the same time each day for 7 days into each nasal cavity in awake mice beginning 24 hours after HI. We evaluated cognitive recovery using the novel object recognition (NOR) and western analysis to analyze neuro-markers and brain health such as synaptophysin and microtubule associated protein -2 (MAP2). The objective of this study was to evaluate the role and therapeutic potential of BDNF in neonatal HI recovery. Our results indicate that intranasal BDNF delivered within 24 hours after HI improved object discrimination at both 28 and 42 days after HI. Our results also demonstrate increased synaptophysin and MAP2 at day 42 in HI animals that received intranasal BDNF treatment compared to HI animals that were administered saline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938072 | PMC |
http://dx.doi.org/10.5607/en23030 | DOI Listing |
Int J Mol Sci
December 2024
Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy.
Brain-derived neurotrophic factor (BDNF) is critical for neuroplasticity, synaptic transmission, and neuronal survival. Studies have implicated it in the pathophysiology of depression, as its expression is significantly reduced in brain areas such as the prefrontal cortex and hippocampus in patients with depression. Our narrative review focuses on the relationship between BDNF, ketamine, and esketamine, specifically by summarizing human studies investigating BDNF variations in patients treated with these two drugs.
View Article and Find Full Text PDFTheranostics
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
The level of miR-206-3p in the plasma and temporal cortex is increased in Alzheimer's disease (AD) patients. miR-206-3p antagomir injected into hippocampus ameliorates cognitive deficits by enhancing the level of BDNF. However, the trauma caused by brain injection and susceptibility to degradation limit its application.
View Article and Find Full Text PDFTransl Psychiatry
November 2024
Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
Neurotherapeutics
November 2024
Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan. Electronic address:
Parkinson's disease (PD) is a prevalent movement disorder characterized by mitochondrial dysfunction and dopaminergic neuronal loss in the substantia nigra of the midbrain. Currently, there are no effective treatments to cure or slow the progression of PD, highlighting an urgent need for new therapeutic strategies. Emerging evidence suggests that mesenchymal stem cells (MSCs) and fibroblast growth factor 21 (FGF21) are potential candidates for PD treatment.
View Article and Find Full Text PDFResearch (Wash D C)
November 2024
The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
Postpartum depression (PPD) represents a important emotional disorder emerging after childbirth, characterized by its complex etiology and challenging management. Despite extensive preclinical and clinical investigations underscoring the role of estrogen fluctuations and estrogen receptor genes in PPD, the precise mechanisms underpinning this condition have remained elusive. In our present study, animal behavioral studies have elucidated a tight link between the aberrant expression of ESR2, miR-10a-5p, and BDNF in the prefrontal cortex of mice exhibiting postpartum depressive-like behavior, shedding light on the potential molecular pathways involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!