Soil mass balances are used to assess the risk of trace metals that are inadvertently applied with fertilizers into agroecosystems. The accuracy of such balances is limited by leaching rates, as they are difficult to measure. Here, we used monolith lysimeters to precisely determine Cd, Cu, and Zn leaching rates in 2021 and 2022. The large lysimeters (n = 12, 1 m diameter, 1.35 m depth) included one soil type (cambisol, weakly acidic) and distinct cropping systems with three experimental replicates. Stable isotope tracers were applied to determine the direct transfer of these trace metals from the soil surface into the seepage water. The annual leaching rates ranged from 0.04 to 0.30 for Cd, 2.65 to 11.7 for Cu, and 7.27 to 39.0 g (ha a) for Zn. These leaching rates were up to four times higher in the year with several heavy rain periods compared to the dry year. Monthly resolved data revealed that distinct climatic conditions in combination with crop development have a strong impact on trace metal leaching rates. In contrast, fertilization strategy (e.g., conventional vs. organic) had a minor effect on leaching rates. Trace metal leaching rates were up to 10 times smaller than fertilizer inputs and had therefore a minor impact on soil mass balances. This was further confirmed with isotope source tracing that showed that only small fractions of Cd, Cu, and Zn were directly transferred from the soil surface to the leached seepage water within two years (< 0.07 %). A comparison with models that predict Cd leaching rates in the EU suggests that the models overestimate the Cd soil output with seepage water. Hence, monolith lysimeters can help to refine leaching models and thereby also soil mass balances that are used to assess the risk of trace metals inputs with fertilizers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!