Biological dinitrogen (N) fixation is a key metabolic process exclusively performed by prokaryotes, some of which are symbiotic with eukaryotes. Species of the marine haptophyte algae Braarudosphaera bigelowii harbor the N-fixing endosymbiotic cyanobacteria UCYN-A, which might be evolving organelle-like characteristics. We found that the size ratio between UCYN-A and their hosts is strikingly conserved across sublineages/species, which is consistent with the size relationships of organelles in this symbiosis and other species. Metabolic modeling showed that this size relationship maximizes the coordinated growth rate based on trade-offs between resource acquisition and exchange. Our findings show that the size relationships of N-fixing endosymbionts and organelles in unicellular eukaryotes are constrained by predictable metabolic underpinnings and that UCYN-A is, in many regards, functioning like a hypothetical N-fixing organelle (or nitroplast).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2024.02.016DOI Listing

Publication Analysis

Top Keywords

size ratio
8
size relationships
8
size
5
metabolic
4
metabolic trade-offs
4
trade-offs constrain
4
constrain cell
4
cell size
4
ratio nitrogen-fixing
4
nitrogen-fixing symbiosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!