Anemonefish are better taxonomists than humans.

Curr Biol

Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Okinawa, Japan; Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei City, Taiwan. Electronic address:

Published: March 2024

AI Article Synopsis

  • The relationship between giant sea anemones, Symbiodiniaceae algae, and anemonefish highlights mutualism, with specific associations varying by species.
  • Researchers identified three main clades of sea anemones that host different anemonefish species, revealing both specialized and generalist preferences.
  • A study in southern Japan discovered that the bubble-tip sea anemone can be divided into four distinct lineages, with specific anemonefish associating with certain lineages, indicating complex evolutionary relationships.

Article Abstract

The symbiosis between giant sea anemones, algae of the family Symbiodiniaceae, and anemonefish is an iconic example of a mutualistic trio. Molecular analyses have shown that giant sea anemones hosting anemonefish belong to three clades: Entacmaea, Stichodactyla, and Heteractis (Figure 1A). Associations among 28 species of anemonefish and 10 species of giant sea anemone hosts are complex. Some fish species are highly specialized to only one anemone species (e.g., Amphiprion frenatus with Entacmaea quadricolor), whereas others are more generalist (e.g., Amphiprion clarkii). Reasons for host preferences are obscured, among other things, by the lack of resolution in the giant sea anemone phylogeny. Here, we generated a transcriptomic dataset from 55 sea anemones collected from southern Japan to reconstruct these phylogenetic relationships. We observed that the bubble-tip sea anemone E. quadricolor, currently considered a single species, can be separated into at least four cryptic lineages (A-D). Surprisingly, these lineages can be precisely distinguished by observing their association with anemonefish: A. frenatus only associates with lineage D, whereas A. clarkii lives in the other three lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2023.07.051DOI Listing

Publication Analysis

Top Keywords

giant sea
16
sea anemones
12
sea anemone
12
sea
6
anemonefish
5
species
5
anemonefish better
4
better taxonomists
4
taxonomists humans
4
humans symbiosis
4

Similar Publications

Establishment and Characterization of Bisexually Fertile Triploid Dwarf Surf Clam Mulinia lateralis.

Mar Biotechnol (NY)

December 2024

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.

Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids.

View Article and Find Full Text PDF

Ecytonucleospora hepatopenaei (EHP), a microsporidian parasite first named and characterized from the Penaeus monodon (black or giant tiger shrimp), causes growth retardation and poses a significant threat to shrimp farming. We observed shrimp farms associated with disease conditions during our fish disease surveillance and health management program in West Bengal, India. Shrimp exhibited growth retardation and increased size variability, particularly in advanced stages, exhibiting soft shells, lethargy, reduced feeding and empty midguts.

View Article and Find Full Text PDF

Telomere-to-telomere gapless genome assembly of the giant grouper (Epinephelus lanceolatus).

Sci Data

December 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

The giant grouper (Epinephelus lanceolatus) is a large coral reef fish distributed in the Indian Ocean and the Pacific Ocean. With a high market value, this species can grow up to approximately 2.7 meters in length and weigh 440 kilograms.

View Article and Find Full Text PDF

Asymmetric limit cycles within Lorenz chaos induce anomalous mobility for a memory-driven active particle.

Phys Rev E

November 2024

Ecole Nationale Supérieure de Génie Mathématique et Modélisation (ENSGMM), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Republique du Bénin.

On applying a small bias force, nonequilibrium systems may respond in paradoxical ways such as with giant negative mobility (GNM)-a large net drift opposite to the applied bias, or giant positive mobility (GPM)-an anomalously large drift in the same direction as the applied bias. Such behaviors have been extensively studied in idealized models of externally driven passive inertial particles. Here, we consider a minimal model of a memory-driven active particle inspired from experiments with walking and superwalking droplets, whose equation of motion maps to the celebrated Lorenz system.

View Article and Find Full Text PDF

The red panda (Ailurus), a rare and endangered mammal native to the Himalayan-Hengduan Mountains, has a specialized bamboo diet. Combining morphological and genomic evidence, red pandas have been classified as and . However, previous studies focused on ecological aspects such as foraging behaviors, habitat use and threats within specific distributions; hence, there is still a gap in quantitative comparative studies on the trophic niches of these two species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!