Background: Characterization of motor deficits after brain injury is important for rehabilitation personalization. While studies reported abnormalities in the kinematics of paretic and non-paretic elbow extension for patients with brain injuries, kinematic analysis is not sufficient to explore how patients deal with musculoskeletal redundancy and the energetic aspect of movement execution. Conversely, interarticular coordination and movement kinetics can reflect patients' motor strategies. This study investigates motor strategies of paretic and non-paretic upper limb after brain injury to highlight motor deficits or compensation strategies.
Methods: 26 brain-injured hemiplegic patients and 24 healthy controls performed active elbow extensions in the horizontal plane, with both upper limbs for patients and, with the dominant upper limb for controls. Elbow and shoulder kinematics, interarticular coordination, net joint kinetics were quantified.
Findings: Results show alterations in kinematics, and a strong correlation between elbow and shoulder angles, as well as time to reach elbow and shoulder peak angular velocity in both upper limbs of patients. Net joint kinetics were lower for paretic limb and highlighted a fragmented motor strategy with increased number of transitions between concentric and eccentric phases.
Interpretation: In complement to kinematic results, our kinetic results confirmed patients' difficulties to manage both spatially and temporally the joint degrees of freedom redundancy but revealed a fragmented compensatory motor strategy allowing patients upper limb extension despite quality alteration and decrease in energy efficiency. Motor rehabilitation should improve the management of this fragmentation strategy to improve the performance and the efficiency of active movement after brain injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2024.106221 | DOI Listing |
J Plast Reconstr Aesthet Surg
November 2024
Department of Hand Surgery, Herlev/Gentofte University Hospital of Copenhagen, Hospitalsvej 1, 2900 Hellerup, Denmark; University of Copenhagen, Faculty of Health and Medical Sciences, Institute of Clinical Medicine, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
The restoration of nerve function after the injury might be complicated by the development of a disorganized fibrous mass-a neuroma. This results in sensory and/or motor deficits and pain that can be severely debilitating. Surgical excision of the painful neuroma may leave a gap, which can be bridged using autografts or allografts.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
Department of Electronic and Computer Engineering, University of Córdoba, Spain.
Background And Objective: Stroke remains a significant global concern, particularly as populations age and the incidence of stroke rises. Approximately one third of stroke survivors experience loss of autonomy, often leading to a decreased participation in rehabilitation due to economic, emotional, and social barriers. In response to these challenges, this study introduces PACTUS, an innovative gamified device designed for the rehabilitation of cognitive and motor functions in the upper limbs of patients with post-stroke.
View Article and Find Full Text PDFEur J Neurol
January 2025
Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Background: Magnetic resonance imaging may suggest spinal cord compression and structural lesions in degenerative cervical myelopathy (DCM) but cannot reveal functional impairments in spinal pathways. We aimed to assess the value of contact heat evoked potentials (CHEPs) in addition to MRI and hypothesized that abnormal CHEPs may be evident in DCM independent of MR-lesions and are related to dynamic mechanical cord stress.
Methods: Individuals with DCM underwent neurologic examination including segmental sensory (pinprick, light touch) and motor testing.
J Neuroeng Rehabil
December 2024
Neurological Clinical Research Institute and Sean M. Healey & AMG Center for ALS, Boston, MA, USA.
Background: Wearable technology offers objective and remote quantification of disease progression in neurological diseases such as amyotrophic lateral sclerosis (ALS). Large population studies are needed to determine generalization and reproducibility of findings from pilot studies.
Methods: A large cohort of patients with ALS (N = 202) wore wearable accelerometers on their dominant and non-dominant wrists for a week every two to four weeks and self-entered the ALS Functional Rating Scale-Revised (ALSFRS-RSE) in similar time intervals.
J Neuroeng Rehabil
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
Background: This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!