AI Article Synopsis

  • Medical imaging is essential for diagnosing and treating diseases, but interpreting these images can be tough due to noise and artifacts that may lead to misdiagnosis.
  • Denoising algorithms, particularly those using deep learning, can enhance the quality of images by eliminating these issues, showing promise in various imaging techniques like MRIs and CT scans.
  • A review of 120 papers identified 104 that focused on deep learning methods for image denoising, revealing that 40% of researchers favored deep convolutional neural networks, while other techniques included encoder-decoder models and generative adversarial networks.

Article Abstract

Medical imaging plays a critical role in diagnosing and treating various medical conditions. However, interpreting medical images can be challenging even for expert clinicians, as they are often degraded by noise and artifacts that can hinder the accurate identification and analysis of diseases, leading to severe consequences such as patient misdiagnosis or mortality. Various types of noise, including Gaussian, Rician, and Salt-pepper noise, can corrupt the area of interest, limiting the precision and accuracy of algorithms. Denoising algorithms have shown the potential in improving the quality of medical images by removing noise and other artifacts that obscure essential information. Deep learning has emerged as a powerful tool for image analysis and has demonstrated promising results in denoising different medical images such as MRIs, CT scans, PET scans, etc. This review paper provides a comprehensive overview of state-of-the-art deep learning algorithms used for denoising medical images. A total of 120 relevant papers were reviewed, and after screening with specific inclusion and exclusion criteria, 104 papers were selected for analysis. This study aims to provide a thorough understanding for researchers in the field of intelligent denoising by presenting an extensive survey of current techniques and highlighting significant challenges that remain to be addressed. The findings of this review are expected to contribute to the development of intelligent models that enable timely and accurate diagnoses of medical disorders. It was found that 40% of the researchers used models based on Deep convolutional neural networks to denoise the images, followed by encoder-decoder (18%) and other artificial intelligence-based techniques (15%) (Like DIP, etc.). Generative adversarial network was used by 12%, transformer-based approaches (13%) and multilayer perceptron was used by 2% of the researchers. Moreover, Gaussian noise was present in 35% of the images, followed by speckle noise (16%), poisson noise (14%), artifacts (10%), rician noise (7%), Salt-pepper noise (6%), Impulse noise (3%) and other types of noise (9%). While the progress in developing novel models for the denoising of medical images is evident, significant work remains to be done in creating standardized denoising models that perform well across a wide spectrum of medical images. Overall, this review highlights the importance of denoising medical images and provides a comprehensive understanding of the current state-of-the-art deep learning algorithms in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2024.103615DOI Listing

Publication Analysis

Top Keywords

medical images
32
denoising medical
20
deep learning
16
medical
11
noise
11
images
10
noise artifacts
8
types noise
8
salt-pepper noise
8
algorithms denoising
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!