Free living amoeba (FLA) are among the organisms commonly found in wastewater and are well-established hosts for diverse microbial communities. Despite its clinical significance, there is little knowledge on the FLA microbiome and resistome, with previous studies relying mostly on conventional approaches. In this study we comprehensively analyzed the microbiome, antibiotic resistome and virulence factors (VFs) within FLA isolated from final treated effluents of two wastewater treatment plants (WWTPs) using shotgun metagenomics. Acanthamoeba has been identified as the most common FLA, followed by Entamoeba. The bacterial diversity showed no significant difference (p > 0.05) in FLA microbiomes obtained from the two WWTPs. At phylum level, the most dominant taxa were Proteobacteria, followed by Firmicutes and Actinobacteria. The most abundant genera identified were Enterobacter followed by Citrobacter, Paenibacillus, and Cupriavidus. The latter three genera are reported here for the first time in Acanthamoeba. In total, we identified 43 types of ARG conferring resistance to cephalosporins, phenicol, streptomycin, trimethoprim, quinolones, cephalosporins, tigecycline, rifamycin, and kanamycin. Similarly, a variety of VFs in FLA metagenomes were detected which included flagellar proteins, Type IV pili twitching motility proteins (pilH and rpoN), alginate biosynthesis genes AlgI, AlgG, AlgD and AlgW and Type VI secretion system proteins and general secretion pathway proteins (tssM, tssA, tssL, tssK, tssJ, fha, tssG, tssF, tssC and tssB, gspC, gspE, gspD, gspF, gspG, gspH, gspI, gspJ, gspK, and gspM). To the best of our knowledge, this is the first study of its kind to examine both the microbiomes and resistome in FLA, as well as their potential pathogenicity in treated effluents. Additionally, this study showed that FLA can host a variety of potentially pathogenic bacteria including Paenibacillus, and Cupriavidus that had not previously been reported, indicating that their relationship may play a role in the spread and persistence of antibiotic resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) as well as the evolution of novel pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijheh.2024.114345 | DOI Listing |
Background: The effects of antibiotic use on children's gut microbiomes and resistomes are not well characterized in middle-income countries, where pediatric antibiotic consumption is exceptionally common. We characterized the effects of antibiotics commonly used by Peruvian children (i.e.
View Article and Find Full Text PDFGut Microbes
December 2025
Université Paris Cité, IAME, INSERM, Paris, France.
Metagenomic sequencing deepened our knowledge about the role of the intestinal microbiota in human health, and several studies with various methodologies explored its dynamics during antibiotic treatments. We compared the impact of four widely used antibiotics on the gut bacterial diversity. We used plasma and fecal samples collected during and after treatment from healthy volunteers assigned to a 5-day treatment either by ceftriaxone (1 g every 24 h through IV route), ceftazidime/avibactam (2 g/500 mg every 8 h through IV route), piperacillin/tazobactam (1 g/500 mg every 8 h through IV route) or moxifloxacin (400 mg every 24 h through oral route).
View Article and Find Full Text PDFTrop Anim Health Prod
December 2024
Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil.
The research aimed to evaluate the effects of a commercial blend of phytogenic compounds on the digestibility, antioxidant system, intestinal microbiota, and performance of weaned piglets. Two experiments compared three treatments (diets): control, zinc bacitracin (300 g/t) and blended phytogenic compounds (400 g/t). The first experiment analised of digestibility of the dry matter, organic matter, crude protein, crude energy and metabolizable energy, in addition to blood parameters and gut microbiota in 15 piglets commercial cross-bred, weaned at 28 days of age, castrated males, weighing 9.
View Article and Find Full Text PDFAnim Microbiome
December 2024
School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Dogs-whether pets, rural, or stray-exhibit distinct living styles that influence their fecal microbiota and resistomes, yet these dynamics remain underexplored. This study aimed to analyze and compare the fecal microbiota and resistomes of three groups of dogs (37 pets, 20 rural, and 25 stray dogs) in Shanghai, China.
Results: Metagenomic analysis revealed substantial differences in fecal microbial composition and metabolic activities among the dog groups.
J Adv Res
December 2024
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Introduction: Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear.
Objectives: The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!