Exploring the gut microbiota and its potential as a biomarker in gliomas.

Biomed Pharmacother

Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK. Electronic address:

Published: April 2024

Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.116420DOI Listing

Publication Analysis

Top Keywords

gut microbiome
20
gut microbiota
12
gut
8
cancers including
8
brain tumours
8
glioma glioblastoma
8
respect brain
8
brain cancers
8
tool respect
8
microbiome
7

Similar Publications

This review paper delves into the role of probiotics and food bioactives in influencing gut health and overall well-being, within the context of probiotics and food bioactives, emphasizing their roles in modulating inflammation, gut microbiota, and metabolic health. Probiotics are defined as live microorganisms that confer health benefits to the host, primarily through their impact on the gut microbiome; a complex community of microorganisms crucial for maintaining health. The review aims to elucidate how probiotics, incorporated into both traditional and modern food systems, can enhance gut health and address metabolic disorders.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.

View Article and Find Full Text PDF

Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.

View Article and Find Full Text PDF

Unlabelled: Chickens are one of the most economically important poultry species, and their egg-laying performance is a crucial economic trait. The intestinal microbiome plays a significant role in the egg-laying performance. To clarify the diversity of chicken intestinal microbiota and its connection to egg-laying performance, this study utilized 16S rRNA sequencing technology to characterize the intestinal microbiomes of 101 chickens from 13 breeds with varying levels of egg production.

View Article and Find Full Text PDF

is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!