Deep neural networks tend to suffer from the overfitting issue when the training data are not enough. In this paper, we introduce two metrics from the intra-class distribution of correct-predicted and incorrect-predicted samples to provide a new perspective on the overfitting issue. Based on it, we propose a knowledge distillation approach without pretraining a teacher model in advance named Tolerant Self-Distillation (TSD) for alleviating the overfitting issue. It introduces an online updating memory and selectively stores the class predictions of the samples from the past iterations, making it possible to distill knowledge across the iterations. Specifically, the class predictions stored in the memory bank serve as the soft labels for supervising the samples from the same class for the current iteration in a reverse way, i.e. the correct-predicted samples are supervised with the incorrect predictions while the incorrect-predicted samples are supervised with the correct predictions. Consequently, the premature convergence issue caused by the over-confident samples would be mitigated, which helps the model to converge to a better local optimum. Extensive experimental results on several image classification benchmarks, including small-scale, large-scale, and fine-grained datasets, demonstrate the superiority of the proposed TSD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106215DOI Listing

Publication Analysis

Top Keywords

overfitting issue
12
tolerant self-distillation
8
image classification
8
incorrect-predicted samples
8
class predictions
8
samples supervised
8
samples
6
self-distillation image
4
classification deep
4
deep neural
4

Similar Publications

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Ureteropelvic junction obstruction (UPJO) is a common pediatric condition often treated with pyeloplasty. Despite the surgical intervention, postoperative urinary tract infections (UTIs) occur in over 30% of cases within six months, adversely affecting recovery and increasing both clinical and economic burdens. Current prediction methods for postoperative UTIs rely on empirical judgment and limited clinical parameters, underscoring the need for a robust, multifactorial predictive model.

View Article and Find Full Text PDF

PE-GCL: Advancing pesticide ecotoxicity prediction with graph contrastive learning.

J Hazard Mater

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China. Electronic address:

Ecotoxicity assessments, which rely on animal testing, face serious challenges, including high costs and ethical concerns. Computational toxicology presents a promising alternative; nevertheless, existing predictive models encounter difficulties such as limited datasets and pronounced overfitting. To address these issues, we propose a framework for predicting pesticide ecotoxicity using graph contrastive learning (PE-GCL).

View Article and Find Full Text PDF

Federated learning meets Bayesian neural network: Robust and uncertainty-aware distributed variational inference.

Neural Netw

January 2025

College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China. Electronic address:

Federated Learning (FL) is a popular framework for data privacy protection in distributed machine learning. However, current FL faces some several problems and challenges, including the limited amount of client data and data heterogeneity. These lead to models trained on clients prone to drifting and overfitting, such that we just obtain suboptimal performance of the aggregated model.

View Article and Find Full Text PDF

This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!