A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Pressure and Temperature Effects on the Clustering Ability of Monohydroxy Alcohols. | LitMetric

This study examined the clustering behavior of monohydroxy alcohols, where hydrogen-bonded clusters of up to a hundred molecules on the nanoscale can form. By performing X-ray diffraction experiments at different temperatures and under high pressure, we investigated how these conditions affect the ability of alcohols to form clusters. The pioneering high-pressure experiment performed on liquid alcohols contributes to the emerging knowledge in this field. Implementation of molecular dynamics simulations yielded excellent agreement with the experimental results, enabling the analysis of theoretical models. Here we show that at the same global density achieved either by alteration of pressure or temperature, the local aggregation of molecules at the nanoscale may significantly differ. Surprisingly, high pressure not only promotes the formation of hydrogen-bonded clusters but also induces the serious reorganization of molecules. This research represents a milestone in understanding association under extreme thermodynamic conditions in other hydrogen bonding systems such as water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961836PMC
http://dx.doi.org/10.1021/acs.jpclett.4c00085DOI Listing

Publication Analysis

Top Keywords

monohydroxy alcohols
8
hydrogen-bonded clusters
8
molecules nanoscale
8
high pressure
8
high-pressure temperature
4
temperature effects
4
effects clustering
4
clustering ability
4
ability monohydroxy
4
alcohols
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!