Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The protein-ligand binding free energy is a central quantity in structure-based computational drug discovery efforts. Although popular alchemical methods provide sound statistical means of computing the binding free energy of a large breadth of systems, they are generally too costly to be applied at the same frequency as end point or ligand-based methods. By contrast, these data-driven approaches are typically fast enough to address thousands of systems but with reduced transferability to unseen systems. We introduce DrΔ-Net (or simply Dragnet), an equivariant graph neural network that can blend ligand-based and protein-ligand data-driven approaches. It is based on a 3D fingerprint representation of the ligand alone and in complex with the protein target. Dragnet is a global scoring function to predict the binding affinity of arbitrary protein-ligand complexes, but can be easily tuned via transfer learning to specific systems or end points, performing similarly to common 2D ligand-based approaches in these tasks. Dragnet is evaluated on a total of 28 validation proteins with a set of congeneric ligands derived from the Binding DB and one custom set extracted from the ChEMBL Database. In general, a handful of experimental binding affinities are sufficient to optimize the scoring function for a particular protein and ligand scaffold. When not available, predictions from physics-based methods such as absolute free energy perturbation can be used for the transfer learning tuning of Dragnet. Furthermore, we use our data to illustrate the present limitations of data-driven modeling of binding free energy predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966643 | PMC |
http://dx.doi.org/10.1021/acs.jcim.3c02054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!