AI Article Synopsis

  • The study uses thermodynamic and kinetic simulations to explore the mechanical properties and behaviors of the Ni-Ti-Cu alloy system, particularly during processes like mechanical alloying and spark plasma sintering.
  • The research includes calculations for stable and unstable phases of NiTiCu materials, demonstrating a link between these phases and microstructure changes during production.
  • Thermal properties, such as conductivity and specific heat, were measured using laser flash and differential scanning calorimetry methods, showing temperatures that align with theoretical predictions, and the findings offer insights for preparing and applying NiTiCu shape memory alloys.

Article Abstract

The thermodynamic and kinetic simulations based on the re-assessment of the thermodynamic and kinetic database of the Ni-Ti-Cu system were employed to predict the phenomena of mechanical alloying, spark plasma sintering and thermal properties of the intriguing Ni-Ti-Cu system. Thermodynamic calculations are presented for the stable and unstable phases of NiTiCu materials and support a correlation with the evolving microstructure during the technological process. Also, the thermal conductivity, the thermal diffusivity and the specific heat of spark plasma sintered and aged Cu-alloyed NiTi-based shape memory alloys (NiTiCu) with two compositions, NiTiCu and NiTiCu, are evaluated and the influence of mechanical alloying and precipitates on thermal properties is discussed. Measurements of these thermal properties were carried out from 25 °C up to 175 °C using the laser flash method, as well as differential scanning calorimetry. The thermal hysteresis of the 20 mm diameter samples was between 8.8 and 24.5 °C. The observed temperatures from DSC experimental transformation features are in reasonable accordance with the thermodynamic predictions. The determined values are between 20.04 and 26.87 W/m K and in agreement with the literature results. Moreover, this paper can provide some suggestions for the preparation of NiTiCu shape memory alloys and their applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934479PMC
http://dx.doi.org/10.3390/nano14050461DOI Listing

Publication Analysis

Top Keywords

thermodynamic kinetic
12
spark plasma
12
thermal properties
12
kinetic simulations
8
plasma sintering
8
ni-ti-cu system
8
mechanical alloying
8
shape memory
8
memory alloys
8
niticu
6

Similar Publications

A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition.

View Article and Find Full Text PDF

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

Poly(lactide-co-glycolide) (PLGA) is widely used in a variety of long-acting injectables. However, its biodegradable nature creates potential chemical stability challenges during melt extrusion, where PLGA is exposed to elevated temperature (100-140 °C) for several minutes. This study evaluated the thermal stability of three PLGA grades (Resomer® 502, 502H, and 505) with varying molecular weights and chain-ends using a differential scanning calorimeter and twin-screw extruder.

View Article and Find Full Text PDF

Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films.

Food Res Int

January 2025

Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.

This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices.

View Article and Find Full Text PDF

Inactivation and sublethal injury of Salmonella Typhimurium on beef and in aqueous solution treated with lactic acid.

Food Res Int

January 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

Salmonella Typhimurium, a common foodborne pathogen, is widespread in foods. Lactic acid (LA) has been employed to control bacteria in food, while it can induce the formation of sublethally injured bacteria. The sublethal injury of LA against S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!