3D shape segmentation is a fundamental and crucial task in the field of image processing and 3D shape analysis. To segment 3D shapes using data-driven methods, a fully labeled dataset is usually required. However, obtaining such a dataset can be a daunting task, as manual face-level labeling is both time-consuming and labor-intensive. In this paper, we present a semi-supervised framework for 3D shape segmentation that uses a small, fully labeled set of 3D shapes, as well as a weakly labeled set of 3D shapes with sparse scribble labels. Our framework first employs an auxiliary network to generate initial fully labeled segmentation labels for the sparsely labeled dataset, which helps in training the primary network. During training, the self-refine module uses increasingly accurate predictions of the primary network to improve the labels generated by the auxiliary network. Our proposed method achieves better segmentation performance than previous semi-supervised methods, as demonstrated by extensive benchmark tests, while also performing comparably to supervised methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3374200DOI Listing

Publication Analysis

Top Keywords

shape segmentation
12
fully labeled
12
labeled dataset
8
labeled set
8
set shapes
8
auxiliary network
8
primary network
8
segmentation
5
labeled
5
semi-supervised shape
4

Similar Publications

Objective: To investigate the predictive value of machine learning-based PET/CT radiomics and clinical risk factors in predicting interim efficacy in patients with follicular lymphoma (FL).

Methods: This study retrospectively analyzed data from 97 patients with FL diagnosed via histopathological examination between July 2012 and November 2023. Lesion segmentation was performed using LIFEx software, and radiomics features were extracted through the uAI Research Portal (uRP) platform, including first-order features, shape features, and texture features.

View Article and Find Full Text PDF

Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.

Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.

View Article and Find Full Text PDF

Based on a prototype of the Beijing subway tunnel, this research conducts large-scale model experiments to systematically investigate the vibration response patterns of tunnels with different damage levels under the influence of measured train loads. Initially, the polynomial fitting modal identification method (Levy) and the model test preparation process are introduced. Then, using time-domain peak acceleration, frequency response function, frequency-domain modal frequency, and modal shape indicators, a detailed analysis of the tunnel's dynamic response is conducted.

View Article and Find Full Text PDF

This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.

View Article and Find Full Text PDF

Motif clustering and digital biomarker extraction for free-living physical activity analysis.

BioData Min

January 2025

Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 100025, Taiwan.

Background: Analyzing free-living physical activity (PA) data presents challenges due to variability in daily routines and the lack of activity labels. Traditional approaches often rely on summary statistics, which may not capture the nuances of individual activity patterns. To address these limitations and advance our understanding of the relationship between PA patterns and health outcomes, we propose a novel motif clustering algorithm that identifies and characterizes specific PA patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!