MXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications. This comprehensive review aims to provide an overview of the properties, challenges, key findings, and applications of less-explored vanadium-based MXenes (V-MXenes) and their composites. The current trends in V-MXene and their composites for energy storage and conversion applications have been thoroughly summarized. Overall, this review offers valuable insights, identifies potential opportunities, and provides key suggestions for future advancements in the MXenes and energy storage/conversion applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202400283 | DOI Listing |
Adv Sci (Weinh)
December 2024
Princeton Materials Institute, Princeton University, Princeton, NJ, 08540, USA.
Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced.
View Article and Find Full Text PDFSmall
December 2024
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
This study reports an effective strategy for designing 3D electrocatalyst via the deposition of ZIF67-derived Co-CN shell layer over CuO nanoarrays to form a CuO@Co-CN hybrid, followed by incorporation with p-block Sb single atoms (CuO@Co-CN/Sb) to obtain highly activated catalytic behaviors. Inheriting both the excellent intrinsic catalytic activity of the components and their synergy, the CuO@Co-CN/Sb material serves as a high-efficiency multifunctional catalyst for overall water splitting and zinc (Zn)-air batteries. The material yields a current density of 10 mA cm at a low overpotential of 72 and 250 mV for the hydrogen evolution reaction and oxygen evolution reaction, respectively.
View Article and Find Full Text PDFNat Protoc
November 2024
College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles.
View Article and Find Full Text PDFSmall
December 2024
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
The development of a nonnoble metal-based cost-effective, efficient, and durable bifunctional electrocatalyst is crucial to achieving the goal of carbon neutrality. In this study, a structural and interfacial engineering approach is employed to design a 2D-2D hierarchical nickel MOF/nickel hydroxide-derived nickel selenide/nickel telluride dual-phase material through a single-step selenotellurization process. The rational design of highly ordered nanoarchitectures provides well-defined voids and ample pathways for ion diffusion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Self-powered sensors, capable of detecting static and dynamic pressure without an external power source, are pivotal for advancements in human-computer interaction, health monitoring, and artificial intelligence. Current sensing technologies, however, often fall short of meeting the growing needs for precise and timely pressure monitoring. This article introduces a novel self-powered pressure sensor utilizing electrochemical reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!