Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019851PMC
http://dx.doi.org/10.1128/jvi.01663-23DOI Listing

Publication Analysis

Top Keywords

cultivation systems
12
hunov
10
human norovirus
8
hunov cultivation
8
cultivation
4
norovirus cultivation
4
systems antiviral
4
antiviral human
4
norovirus hunov
4
hunov major
4

Similar Publications

This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.

View Article and Find Full Text PDF

Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities.

View Article and Find Full Text PDF

Unveiling diversity in amino acid stable isotope profiles for classifying rice varieties, refining types and cultivation systems.

Food Res Int

February 2025

Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy. Electronic address:

Isotope Ratio Mass Spectrometry (IRMS) is a promising tool in organic authentication cases. Premium-priced Italian rice varieties (Carnaroli, Arborio, Baldo) are used in cuisines worldwide for their unique qualitative properties. Organic authentication of rice by morphological assessment is unfeasible, while its market availability at different refining stages (brown, white) further increases the data variability.

View Article and Find Full Text PDF

Background: The early colonization and establishment of the microbiome in newborns is a crucial step in the development of the immune system and host metabolism. However, the exact timing of initial microbial colonization remains a subject of ongoing debate. While numerous studies have attempted to determine the presence or absence of intrauterine bacteria, the majority of them have drawn conclusions based on sequencing data from maternal or infant samples taken at a single time point.

View Article and Find Full Text PDF

To diversify wine production in Xinjiang and address the issue of wine homogenization, it is crucial to leverage the unique climatic advantages of each grape-producing area to foster a high-quality wine industry. Using meteorological data from 80 national standard meteorological stations in Xinjiang, spanning 1961 to 2019, this study established a climatic zoning index system tailored to distinct grape varieties for wines, including dry red, dry white, ice wine, sparkling wine, and natural sweet wines. The system is formulated based on key climatic factors such as the frost-free period, ≥ 10 °C active accumulated temperature (AAT10), mean temperature of the coldest month, annual extreme minimum temperature, and dryness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!