Microbeads as carriers for : a biofertilizer focus on auxin production.

J Microencapsul

Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile.

Published: May 2024

The study aimed to develop a solid biofertilizer using , focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 10 CFU g ± 1.03 × 10 over 180 days at room temperature), a high auxin production (748.8 µg g ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02652048.2024.2324812DOI Listing

Publication Analysis

Top Keywords

auxin production
16
room temperature
8
temperature high
8
high auxin
8
water retention
8
microbeads carriers
4
carriers biofertilizer
4
biofertilizer focus
4
auxin
4
focus auxin
4

Similar Publications

The global rise in population has led to an increased demand for food production, necessitating the adoption of sustainable agricultural practices. Traditional methods often rely on synthetic chemicals that negatively impact both human health and the environment. This study aimed to screen soil fungal strains for plant-growth-promoting traits, specifically focusing on their ability to solubilize phosphates, produce indole-3-acetic acid (IAA), and synthesize siderophores.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

Light conversion films are crucial for optimizing vegetable crop production in greenhouses, particularly during winter and spring seasons. This study investigated the effects of a europium-based light conversion film (RPO) compared to traditional polyolefin film (PO film, control) on cucumber (Cucumis sativus L.) cultivation, focusing on handle length, yield, and fruit quality in a randomized complete block design with three replications.

View Article and Find Full Text PDF

Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels.

Plant Physiol

December 2024

Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!