Enhancing saturable absorption in a Au-decorated MoS/PEDOT:PSS nanocomposite through plasmon resonance and Pauli blocking.

Phys Chem Chem Phys

Nanophotonics Laboratory, Department of Physics, National Institute of Technology, Thiruchirappalli-620 015, India.

Published: March 2024

We have effectively demonstrated a technique for substantial alteration of the nonlinear saturable absorption (SA) properties in nanocomposite films (NCF) composed of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) and molybdenum disulfide (MoS) decorated with gold nanoparticles (AuNPs). This control is achieved by adjusting the AuNP concentration on the MoS surface and varying the input pulse energy of the laser. The simple drop-casting method is used to create the nanocomposite films (NCFs) on a glass substrate with different amounts of Au-decorated MoS. The Kramers-Kronig equations are employed for determining the refractive index and extinction coefficient values of the resulting NCFs. Nonlinear investigations reveal that adding Au-decorated MoS to pure PEDOT:PSS alters its optical nonlinearity. Surface plasmon resonance and Pauli blocking have been observed in Au-decorated MoS/PEDOT:PSS NCFs. This increases NCF's saturable absorption. An open aperture Z-scan method is utilized to study nonlinear optics, with excitation achieved using a nanosecond (ns) pulsed laser operating at a 532 nm wavelength. The findings reveal the noteworthy saturable absorption characteristics of the NCFs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp06153aDOI Listing

Publication Analysis

Top Keywords

saturable absorption
16
au-decorated mos/pedotpss
8
plasmon resonance
8
resonance pauli
8
pauli blocking
8
nanocomposite films
8
au-decorated mos
8
enhancing saturable
4
absorption
4
au-decorated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!