A documentary standard produced by the American Society of Mechanical Engineers (ASME) for performance evaluation of industrial X-ray computed tomography (XCT) systems for dimensional measurements was released in early 2021. This standard, ASME B89.4.23-2020, specifies test procedures that may be performed to determine whether a system meets the manufacturer's accuracy specifications for acceptance before or after purchase, or for periodic reverification. While there are some core testing requirements in the standard, there is also some flexibility, allowing for a variety of testing configurations that meet the requirements of the standard. It is important that the chosen testing configuration be sensitive to the different systematic sources of error in XCT systems to provide confidence that the system will meet the manufacturer's accuracy specifications for measurements performed by the user subsequent to testing. In this paper, we provide guidance on how to optimally apply the ASME 89.4.23 standard in industry to achieve high sensitivity to geometry errors in cone-beam XCT systems. Through simulation studies, we present some examples of testing configurations that meet the requirements of the ASME B89.4.23 standard and discuss their sensitivity to geometry errors of the detector and the rotation stage. We show that there are some testing configurations that achieve maximal sensitivity to these errors, while other configurations do not capture these error sources with adequate sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857771PMC
http://dx.doi.org/10.6028/jres.126.042DOI Listing

Publication Analysis

Top Keywords

geometry errors
12
xct systems
12
testing configurations
12
asme b89423
8
performance evaluation
8
x-ray computed
8
computed tomography
8
manufacturer's accuracy
8
accuracy specifications
8
requirements standard
8

Similar Publications

Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top vs. a tapered top.

Biomed Phys Eng Express

January 2025

Advanced Nuclear Medicine Science, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, JAPAN, Chiba, 263-8555, JAPAN.

For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously.

View Article and Find Full Text PDF

Purpose: To investigate the impact of the distance from the most-anterior surface of the optic to the principal object plane (POP) and from the foremost haptic to the principal object plane (H-POP) on the intraocular lens (IOL) power calculation.

Setting: A tertiary hospital.

Design: Optical simulation and retrospective cross-sectional study.

View Article and Find Full Text PDF

Completely Multipolar Model for Many-Body Water-Ion and Ion-Ion Interactions.

J Phys Chem Lett

January 2025

Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.

This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.

View Article and Find Full Text PDF

This contribution details a new high-fidelity finite element analysis (FEA) methodology for the investigation of the effect of the graft size on the pressure distribution developing at the calcaneocuboid joint after the Evans osteotomy procedure. The FEA model includes all 28 bones of the foot up to the distal end of fibula and tibia as well as soft tissues, tendons, and muscles. The developed FEA model was validated by comparing the in-vivo pressure distribution on the foot plantar with the in-silico results, resulting in a low deviation equal to 7.

View Article and Find Full Text PDF

Purpose: The study's purpose was to use a simple geometry phantom to validate the deformable image registration (DIR) accuracy and dose warping accuracy in carbon ion radiotherapy (CIRT) and to provide an index for dosimetry in CIRT.

Materials And Methods: We used geometric and anatomical phantoms provided by AAPM TG-132. The DIRs of 3 different settings were performed between reference and translational images for each phantom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!