A portable calorimeter for direct realization of absorbed dose in medical computed tomography (CT) procedures was constructed and tested in a positron emission tomography (PET) CT scanner. The calorimeter consists of two small thermistors embedded in a polystyrene (PS) cylindrical "core" (1.5 cm diameter) that can be inserted into a cylindrical high-density polyethylene (HDPE) phantom (30 cm diameter). The cylindrical design of core and phantom allows coaxial alignment of the system with the scanner rotation axis, which is necessary to minimize variations in dose that would otherwise occur as the X-ray source is rotated during scanning operations. The core can be replaced by a cylindrical ionization chamber for comparing dose measurement results. Measurements using the core and a calibrated thimble ionization chamber were carried out in a beam of 6 MV X-rays from a clinical accelerator and in 120 kV X-rays from a CT scanner. Doses obtained from the calorimeter and chamber in the 6 MV beam exhibited good agreement over a range of dose rates from 0.8 Gy/min to 4 Gy/min, with negligible excess heat. For the CT beam, as anticipated for these X-ray energies, the calorimeter response was complicated by excess heat from device components. Analyses done in the frequency domain and time domain indicated that excess heat increased calorimetric temperature rise by a factor of about 15. The calorimeter's response was dominated by dose to the thermistor, which contains high-atomic-number elements. Therefore, for future construction of calorimeters for CT beams, lower-atomic-number temperature sensors will be needed. These results serve as a guide for future alternative design of calorimeters toward a calorimetry absorbed dose standard for diagnostic CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046824PMC
http://dx.doi.org/10.6028/jres.126.054DOI Listing

Publication Analysis

Top Keywords

excess heat
12
computed tomography
8
absorbed dose
8
ionization chamber
8
dose
6
calorimetry computed
4
tomography beams
4
beams portable
4
calorimeter
4
portable calorimeter
4

Similar Publications

Edible coating (EC) can reduce excessive oil absorption in deep-fat fried food products. Ultrasound is an efficient pretreatment to preserve the quality characteristics of fried samples. The impact of guar gum based EC and sonication on the quality parameters of fried zucchini slices was investigated.

View Article and Find Full Text PDF

Plants are often exposed to combined stress, e.g. heat and cadmium (Cd) stress under natural conditions.

View Article and Find Full Text PDF

Background: Climate-related health impacts have been a global public health concern. Identifying vulnerable populations is critical in implementing adaptation strategies. This study aimed to examine how heat-related impacts on all-cause emergency hospitalisations differ by area deprivation and urbanicity.

View Article and Find Full Text PDF

Recently, there has been growing interest in knowing the best hygrometry level during high-flow nasal oxygen and non-invasive ventilation (NIV) and its potential influence on the outcome. Various studies have shown that breathing cold and dry air results in excessive water loss by nasal mucosa, reduced mucociliary clearance, increased airway resistance, reduced epithelial cell function, increased inflammation, sloughing of tracheal epithelium, and submucosal inflammation. With the Coronavirus Disease 2019 pandemic, using high-flow nasal oxygen with a heated humidifier has become an emerging form of non-invasive support among clinicians.

View Article and Find Full Text PDF

Introduction: It has been reported that even with the same body mass index (BMI), there are subjects with metabolically healthy or unhealthy phenotype. The main determinants of the unhealthy phenotype are the type and distribution of fat, ectopic fat accumulation, genetics, and lifestyle factors. Uncoupling proteins (UCPs) disengage mitochondrial respiration from ATP synthesis and result in heat production, which in turn is related to energy expenditure and, thus, to fat mass accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!