Heat shock proteins, thermotolerance, and insecticide resistance in mosquitoes.

Front Insect Sci

Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States.

Published: January 2024

Mosquitoes transmit pathogens that pose a threat to millions of people globally. Unfortunately, widespread insecticide resistance makes it difficult to control these public health pests. General mechanisms of resistance, such as target site mutations or increased metabolic activity, are well established. However, many questions regarding the dynamics of these adaptations in the context of developmental and environmental conditions require additional exploration. One aspect of resistance that deserves further study is the role of heat shock proteins (HSPs) in insecticide tolerance. Studies show that mosquitoes experiencing heat stress before insecticide exposure demonstrate decreased mortality. This is similar to the observed reciprocal reduction in mortality in mosquitoes exposed to insecticide prior to heat stress. The environmental shifts associated with climate change will result in mosquitoes occupying environments with higher ambient temperatures, which could enhance existing insecticide resistance phenotypes. This physiological relationship adds a new dimension to the problem of insecticide resistance and further complicates the challenges that vector control and public health personnel face. This article reviews studies illustrating the relationship between insecticide resistance and HSPs or genes as well as the intersection of thermotolerance and insecticide resistance. Further study of HSPs and insecticide resistance could lead to a deeper understanding of how environmental factors modulate the physiology of these important disease vectors to prepare for changing climatic conditions and the development of novel strategies to prevent vector-borne disease transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926544PMC
http://dx.doi.org/10.3389/finsc.2024.1309941DOI Listing

Publication Analysis

Top Keywords

insecticide resistance
28
insecticide
10
resistance
9
heat shock
8
shock proteins
8
thermotolerance insecticide
8
control public
8
public health
8
hsps insecticide
8
heat stress
8

Similar Publications

Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.

View Article and Find Full Text PDF

Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.

View Article and Find Full Text PDF

The efficacy of aerial application and chemigation of insecticides is not well explored for western bean cutworm, Striacosta albicosta (Smith), management in corn. In the short term, inadequate application of insecticides can lead to control failures when insect pests are not effectively targeted. In the longer term, exposure to sublethal insecticide concentrations can contribute to the evolution of insecticide resistance.

View Article and Find Full Text PDF

Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.

View Article and Find Full Text PDF

The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!