Objectives: Neural crest cells (NCCs) are transient structures in the fetal life in vertebrates, which develop at the junctional site of the non-neural and neural ectoderm, sharing a common developmental origin for diverse diseases. After Epithelio-mesenchymal (EMT) of the NCCs within the neural tube, delamination of NCCs occurs. After delamination, the transformation of these cells into various cell lineages produces melanocytes, bones, and cartilage of the skull, cells of the enteric and peripheral nervous system. After the conversion, these cells migrate into various locations of the entire body according to the cell lineage. Abnormalities in neural crest (NC) formation and migration result in various malformations and tumors, known as neurocristopathy.

Material And Methods: Herein, this case series describes a single-center experience in cephalic NC disorders over the past 3 years, including 17 cases of varying composition (i.e., vascular, dysgenetic, mixed, and neoplastic forms) involving the brain and occasionally skin, eyes, and face of the patients.

Results: In our study of 17 patients with cephalic NC disease, 6 (35.3%) patients had vascular form, 5 (29.4%) had dysgenetic form, 4 (23.5%) had mixed form, and 2 (11.7%) had neoplastic form. Brain involvement in the form of vascular or parenchyma or both vascular and parenchymal was seen in all of our patients (100%), skin in 6 (35.3%) patients, eye in 2 (11.7%), and face in 1 (5.9%) patient. Treatment was planned according to the various manifestations of the disease.

Conclusion: Neural crest diseases (NCDs) are a rare and under-recognized group of disorders in the literature and may have been under-reported due to a lack of awareness regarding the same. More such reporting may increase the repertoire of these rare disorders such that clinicians can have a high degree of suspicion leading to early detection and timely counseling and also improve preventive strategies and help in developing new drugs for these disorders or prevent them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927042PMC
http://dx.doi.org/10.25259/JCIS_87_2023DOI Listing

Publication Analysis

Top Keywords

neural crest
16
353% patients
8
neural
6
disorders
5
form
5
emerging insights
4
insights cephalic
4
cephalic neural
4
crest
4
crest disorders
4

Similar Publications

The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases.

View Article and Find Full Text PDF

The role of heart and neural crest derivatives-expressed protein factors in pregnancy.

Biochim Biophys Acta Mol Basis Dis

December 2024

National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China. Electronic address:

Heart and neural crest derivatives-expressed protein 1 (HAND1) and Heart and neural crest derivatives-expressed protein 2 (HAND2), members of the Twist-family of basic Helix-Loop-Helix (bHLH) proteins, act as critical transcription factors that play a key role in various developmental processes, including placental development and fetal growth during pregnancy. This review aims to explore the current understanding of HAND1 and HAND2 in pregnant maintenance and their potential implications for maternal and fetal health. We will summarize the mechanisms of action of HAND1 and HAND2 in pregnancy, their expression regulation and association with pregnancy complications such as preterm birth and preeclampsia.

View Article and Find Full Text PDF

Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids.

Neurosci Res

December 2024

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.

View Article and Find Full Text PDF

The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals.

View Article and Find Full Text PDF

[Foetal paraspinal neuroblastoma: A case report of autopsy findings].

Ann Pathol

December 2024

Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Suisse.

Neuroblastoma is a rare tumour originating from neural crest cells, primarily occurring in the adrenal glands and sympathetic ganglia, with prenatal diagnosis often complicated by the difficulty in distinguishing it from other foetal abdominal or paraspinal masses. We present a case of foetal neuroblastoma in a 26-year old woman who, at 36 weeks of gestation, experienced absent foetal movements, leading to ultrasound confirmation of foetal demise with associated effusions. An emergency caesarean section revealed a stillborn male foetus with a previously undetected encapsulated mass in the posterior mediastinum, which was confirmed as neuroblastoma through histopathological analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!