(NPs) can be produced by various methods such as physical and chemical processes. However, environmentally friendly ways are increasingly requested. In this research, (Ag-NPs) were produced by and its antifungal effect on and was investigated. Nanoparticles were produced by silver nitrate salt and native to Isfahan city. In order to optimize the synthesis conditions, optimization of some factors such as volume, concentration, time, temperature, and pH of the extract was performed. The structural and physical properties of NPs were determined by spectrophotometer, XRD, FTIR FESEM, SEM, and TEM microscopy. For the study of the inhibitory effect of NPs on and growth, the fungi were cultured in media containing various concentrations of NPs from 50 to 1500 ppm. Then, the colony diameter was measured for over 10 days and the growth inhibition percentage was estimated. For statistical analysis, the 600 Mann-Whitney tests have been applied.The NPs were produced after mixing the powdered fungal mass and silver nitrate salt in optimum conditions which were 2 mM of salt, triple fungal mass volume proportion relative to the salt, pH of 9, and temperature of 28 °C. The existence of a peak at 420 nm in FTIR was due to nanoparticle production. Based on the XRD, the synthesized NPs had suitable properties similar to the standard NPs reported in the studies. Images from TEM, SEM, and FESEM microscopes displayed uniform NPs in variable sizes between 25 and 100 nm. According to the results, the maximum growth inhibition percentage of Ag-NPs on was approximately 60% at 1500 ppm, and 88% on at 800 ppm. Biosynthesized Ag-NPs with have desirable structural traits and can inhibit the growth of and at significant levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924849PMC
http://dx.doi.org/10.1007/s12088-023-01162-wDOI Listing

Publication Analysis

Top Keywords

nps
8
nps produced
8
silver nitrate
8
nitrate salt
8
growth inhibition
8
inhibition percentage
8
fungal mass
8
green synthesis
4
synthesis silver
4
silver nanoparticles
4

Similar Publications

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.

View Article and Find Full Text PDF

This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.

View Article and Find Full Text PDF

Mesoporous polydopamine composite nanoparticles for multimodal therapy based on disrupting the redox homeostasis within tumor cells.

J Colloid Interface Sci

December 2024

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China. Electronic address:

Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG).

View Article and Find Full Text PDF

Self-assembled nanoparticles of rapamycin prodrugs for the treatment of multiple sclerosis.

J Colloid Interface Sci

December 2024

Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China. Electronic address:

Optimizing the design of nanoparticulate co-delivery systems of antigens and immunomodulators to induce antigen-specific immune tolerance effectively remains a challenge, constrained by low drug loading capacity and premature leakage of active ingredients. Here, we report a prodrug self-assembled nanoparticles (NPs) strategy to synergistically deliver antigen and rapamycin (RAPA) into antigen-presenting cells (APCs) by simply conjugating rapamycin with an aliphatic chain. These prodrug NPs can be efficiently taken up by APCs and then release rapamycin through cleavage of the linker by intracellular esterase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!