Revolutionizing Agriculture: Harnessing CRISPR/Cas9 for Crop Enhancement.

Indian J Microbiol

Department of Biotechnology, Atmiya University, Rajkot, Gujarat 360005 India.

Published: March 2024

Plant crops serve as essential sources of nutritional sustenance, supplying vital nutrients to human diets. However, their productivity and quality are severely jeopardized by factors such as pests, diseases, and adverse abiotic conditions. Addressing these challenges using innovative biotechnological approaches is imperative for advancing sustainable agriculture. In recent years, genome editing technologies have emerged as pivotal genetic tools, revolutionizing plant molecular biology. Among these, the CRISPR-Cas9 system has gained prominence due to its unparalleled precision, streamlined design, and heightened success rates. This review article highlights the profound impact of CRISPR/Cas9 technology on crop improvement. The article critically examines the breakthroughs, ongoing enhancements, and future prospects associated with this cutting-edge technology. In conclusion, the utilization of CRISPR/Cas9 presents a transformative shift in agricultural biotechnology, holding the potential to mitigate longstanding agricultural challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924811PMC
http://dx.doi.org/10.1007/s12088-023-01154-wDOI Listing

Publication Analysis

Top Keywords

revolutionizing agriculture
4
agriculture harnessing
4
harnessing crispr/cas9
4
crispr/cas9 crop
4
crop enhancement
4
enhancement plant
4
plant crops
4
crops serve
4
serve essential
4
essential sources
4

Similar Publications

Perfecting prime editing: achieving precise edits in dicots.

Trends Plant Sci

January 2025

Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Jhang Road, Faisalabad, Pakistan; Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan. Electronic address:

Prime editing (PE), a precise CRISPR-based method, has worked well in some plants but faces challenges in dicots. Vu and colleagues developed new PE tools that greatly improve PE efficiency in dicots, enabling accurate, heritable genome edits. This advance marks a breakthrough that could revolutionize crop improvement and plant biotechnology.

View Article and Find Full Text PDF

Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.

View Article and Find Full Text PDF

The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops play a crucial role across sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops.

View Article and Find Full Text PDF

Harnessing microbes for heavy metal remediation: mechanisms and prospects.

Environ Monit Assess

December 2024

Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India.

Contamination by heavy metals (HMs) poses a significant threat to the ecosystem and its associated micro and macroorganisms, leading to ill effects on humans which necessitate the requirement of effective remediation strategies. Microbial remediation leverages the natural metabolic abilities of microbes to overcome heavy metal pollution effectively. Some of the mechanisms that aids in the removal of heavy metals includes bioaccumulation, biosorption, and biomineralization.

View Article and Find Full Text PDF

Deciphering bacterial protein functions with innovative computational methods.

Trends Microbiol

December 2024

Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel. Electronic address:

Bacteria colonize every niche on Earth and play key roles in many environmental and host-associated processes. The sequencing revolution revealed the remarkable bacterial genetic and proteomic diversity and the genomic content of cultured and uncultured bacteria. However, deciphering functions of novel proteins remains a high barrier, often preventing the deep understanding of microbial life and its interaction with the surrounding environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!