Introduction: Renewal of extinguished responses is associated with higher activity in specific extinction-relevant brain regions, i.e., hippocampus (HC), inferior frontal gyrus (IFG), and ventromedial PFC (vmPFC). HC is involved in processing of context information, while IFG and vmPFC use such context information for selecting and deciding among competing response options. However, it is as yet unknown to what extent trials with changed versus unchanged outcome, or extinction trials that evoke renewal (i.e., extinction context differs from acquisition and test context: ABA trials) and trials that do not (i.e., same context in all phases: AAA trials) are represented differentially in extinction-relevant brain regions.
Methods: In this study, we applied representational similarity analysis (RSA) to determine differences in neural representations of these trial types and their relationship to extinction error rates and renewal level.
Results: Overall, individuals with renewal (REN) and those without (NoREN) did not differ significantly in their discrimination levels between ABA and AAA extinction trials, with the exception of right posterior HC, where REN exhibited more pronounced context-related discrimination. In addition, higher dissimilarity of representations in bilateral posterior HC, as well as in several IFG regions, during extinction learning was linked to lower ABA renewal rates. Both REN and NoREN benefitted from prediction error feedback from ABA extinction errors for context- and outcome-related discrimination of trials in IFG, vmPFC, and HC, but only the NoREN group also benefitted from error feedback from AAA extinction errors.
Discussion: Thus, while in both groups the presence of a novel context supported formation of distinct representations, only in NoREN the expectancy violation of the surprising change of outcome alone had a similar effect. In addition, only in NoREN context-related discrimination was linked to error feedback in vmPFC. In summary, the findings show that context- and outcome-related discrimination of trials in HC, vmPFC, and IFG is linked to extinction learning errors, regardless of renewal propensity, and at the same time point towards differential context processing strategies in REN and NoREN. Moreover, better discrimination of context-related trials during extinction learning promotes less renewal during extinction recall, suggesting that renewal may be related to suboptimal context-related trial discrimination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925752 | PMC |
http://dx.doi.org/10.3389/fnbeh.2024.1307825 | DOI Listing |
Curr Top Behav Neurosci
January 2025
Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
The elucidation of the functional neuroanatomy of human fear, or threat, extinction has started in the 2000s by a series of enthusiastically greeted functional magnetic resonance imaging (fMRI) studies that were able to translate findings from rodent research about an involvement of the ventromedial prefrontal cortex (vmPFC) and the hippocampus in fear extinction into human models. Enthusiasm has been painfully dampened by a meta-analysis of human fMRI studies by Fullana and colleagues in 2018 who showed that activation in these areas is inconsistent, sending shock waves through the extinction research community. The present review guides readers from the field (as well as non-specialist readers desiring safe knowledge about human extinction mechanisms) during a series of exposures with corrective information.
View Article and Find Full Text PDFNat Commun
January 2025
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.
View Article and Find Full Text PDFAddict Neurosci
December 2024
Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Departament de Biologia, Universitat de Girona, Girona, Spain. Electronic address:
Background: Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
Comorbidity is a characteristic hallmark of anxiety disorders. Presence of comorbid anxiety and depression is challenging to the diagnosis and treatment. Conventional and transdiagnostic treatment options for anxiety disorders strongly depend on the use of exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!