AI Article Synopsis

  • Mice show different swimming styles and abilities, which may lead to different health benefits from swimming exercise.
  • Researchers set up a tank to observe how 45 mice swam for a month, noting things like their favorite swimming areas and speeds.
  • Mice that liked swimming in the middle of the tank got better heart health and lower blood pressure, suggesting that individual swimming behaviors are important for understanding how exercise affects them.

Article Abstract

Behaviors of swimming rodents are not uniform, exhibiting large variations, which may underlie the individual differences in swimming exercise-induced benefits. The study aimed to monitor individualized swimming behavior and evaluate its biological significance. A swimming tank which can monitor individualized rodent swimming behavior during exercise was established. A total of 45 mice were subjected to swimming training for 1 month (1 h per day) and the swimming behaviors of each mouse were recorded. The swimming behaviors of mice displayed considerable variations in aspects of distance, velocity, and area preference. For example, nearly one-third of mice preferred to swim in central area and most of the mice exhibited an even area distribution. Long-term exercise training improved cardiac systolic function and decreased blood pressure in mice, but hardly changed swimming behaviors. Analyses of the relationship between swimming behavior and cardiovascular adaptations to exercise training revealed that swimming behavior indicated the biological effects of swimming training. Specifically, mice which preferred swimming at the central zone or were trainable in behavior during 1-month training exhibited better outcomes in cardiac function and blood pressure post long-term exercise. Mechanistically, a centralized swimming behavior indicated a smaller stress during exercise, as evidenced by a milder activation of hypothalamic-pituitary-adrenal axis. These results suggest that swimming behavior during training indicates individualized adaptations to long-term exercise, and highlight a biological significance of swimming behavior monitoring in animal studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925659PMC
http://dx.doi.org/10.3389/fphys.2024.1357120DOI Listing

Publication Analysis

Top Keywords

swimming behavior
32
swimming
17
swimming behaviors
12
long-term exercise
12
adaptations exercise
8
monitor individualized
8
behavior
8
biological significance
8
significance swimming
8
swimming training
8

Similar Publications

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.

View Article and Find Full Text PDF

An in-situ study in the Xijiang River basin revealed adverse effects of total dissolved gas supersaturation on fish.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.

High dam discharge can lead to total dissolved gas (TDG) supersaturation in downstream rivers, causing fish to suffer from bubble trauma and even mortality. Focusing on the Datengxia hydropower station in the Xijiang River basin, we conducted in-situ experiments to explore the tolerance patterns of economic fish species, including Ctenopharyngodon idella, Hypophthalmichthys molitrix, and Cirrhinus molitorella, under the influence of TDG supersaturation at different compensation depths. Moreover, the development and recovery patterns of bubble trauma and the swimming ability of fish exposed to TDG supersaturated water were investigated.

View Article and Find Full Text PDF

Introduction: Substance use disorders, particularly alcohol use disorders, represent a significant public health problem, with adolescents particularly vulnerable to their adverse effects. This study examined the possible anxiolytic and antidepressant effects of biotin, a crucial vitamin for brain function, in attenuating the behavioral and neurobiological changes associated with alcohol withdrawal in adolescent rats.

Materials And Methods: Sixty male Sprague-Dawley rats were exposed to a 20% ethanol solution for 21 days, followed by a 21-day drug-free period to assess long-term behavioral and physiological changes.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks.

Bioinspir Biomim

January 2025

Chongqing Jiaotong University, No. 66, Xuefu Avenue, Nanan District, Chongqing City, Chongqing, Chongqing, 400074, CHINA.

The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics (CFD) has emerged and been applied to simulate the autonomous behavior of higher organisms like fish. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!