Combination therapy, a treatment modality that involves multiple treatment agents, has become imperative for improving treatment effectiveness and addressing resistance in the field of oncology. However, determining the most effective dose for these combinations, particularly when dealing with intricate drug interactions and diverse toxicity patterns, presents a substantial challenge. This paper introduces a novel Bayesian se-finding esign for inatin therapies with information borrowing, named the DOD-Combo design. Leveraging historical single-agent trials and the meta-analytic-predictive (MAP) power prior, our approach utilizes a copula-type model to connect individual drug priors with joint toxicity probabilities in combination treatments. The MAP power prior allows the integration of information from multiple historical trials, constructing informative priors for each agent. Extensive simulations confirm our method's superior performance compared to combination designs with no information borrowing. By adaptively incorporating historical data, our approach reduces sample sizes and enhances efficiency in selecting the maximum tolerated dose (MTD), effectively addressing the intricate challenges presented by combination trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10543406.2024.2325142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!