An Improved Method for Eliminating or Creating Intragenic Bacterial Promoters.

Methods Mol Biol

School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.

Published: March 2024

Recent advances in genomic refactoring have been hindered by the ever-present complication of internal or cryptic transcriptional regulation. Typical approaches to these features have been to randomize or perform mass alterations to the gene sequences thought to contain the regulatory motifs; however, this approach can cause problems by altering translational speeds, introducing long distance DNA-DNA interaction effects, and inducing RNA toxicity. Previously, we developed a rational design approach named COdon Restrained Promoter SilEncing (CORPSE) which takes externally identified promoter sequences and uses position-specific scoring matrices as proxy promoter strengths to make minimal changes to promoter sequences to disable their activity. Additionally, through inverting our system we were also able to modify weak internal promoters to increase their activity. In this chapter, we augment our previous process with the biophysical model Promoter Calculator v1.0 developed by LaFleur et al. to combine promoter identification and activity prediction, with our algorithm to silently modify promoter sequences, to provide more robust promoter elimination and creation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3658-9_12DOI Listing

Publication Analysis

Top Keywords

promoter sequences
12
promoter
8
improved method
4
method eliminating
4
eliminating creating
4
creating intragenic
4
intragenic bacterial
4
bacterial promoters
4
promoters advances
4
advances genomic
4

Similar Publications

Background: Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

Identification of a Subpopulation of Astrocyte Progenitor Cells in the Neonatal Subventricular Zone: Evidence that Migration is Regulated by Glutamate Signaling.

Neurochem Res

January 2025

Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.

In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.

View Article and Find Full Text PDF

The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!