Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-47606-8_43DOI Listing

Publication Analysis

Top Keywords

neural networks
12
fractal electronics
8
fractal
4
electronics stimulating
4
stimulating sensing
4
sensing neural
4
networks enhanced
4
enhanced electrical
4
electrical optical
4
optical cell
4

Similar Publications

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.

View Article and Find Full Text PDF

Being part of a social structure offers chances for social learning vital for survival and reproduction. Nevertheless, studying the neural mechanisms of social learning under laboratory conditions remains challenging. To investigate the impact of socially transmitted information about rewards on individual behavior, we used Eco-HAB, an automated system monitoring the voluntary behavior of group-housed mice under seminaturalistic conditions.

View Article and Find Full Text PDF

Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!