With the advent of the first laser sources and suitable detectors, optical sensor applications immediately also came into focus. During the last decades, a huge variety of optical sensor concepts were developed, yet the forecast for the future application potential appears even larger. In this context, the development of new sensor probes at different scales down to the atomic or molecular level open new avenues for research and development. We investigated an iron based triazole molecular spin-crossover complex changing its absorption characteristics significantly by varying environmental parameters such as humidity, temperature, magnetic or electric field, respectively, with respect to its suitability for a new class of versatile molecular sensor probes. Hereby, besides the investigation of synthesized pure bulk material using different analyzing methods, we also studied amorphous micro particles which were applied in or onto optical waveguide structures. We found that significant changes of the reflection spectra can also be obtained after combining the particles with different types of optical waveguides.The obtained results demonstrate the suitability of the material complex for a broad field of future sensor applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636798PMC
http://dx.doi.org/10.1038/s41598-024-56427-1DOI Listing

Publication Analysis

Top Keywords

optical sensor
8
sensor applications
8
sensor probes
8
optical
5
sensor
5
investigation molecular
4
molecular switching
4
switching process
4
process spin
4
spin crossover
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!