The discovery and development of anticancer drugs for pediatric patients have historically languished when compared to both past and recent activity in drug development for adult patients, notably the dramatic spike of targeted and immune-oncology therapies. The reasons for this difference are multifactorial. Recent changes in the regulatory landscape surrounding pediatric cancer drug development and the understanding that some pediatric cancers are driven by genetic perturbations that also drive disparate adult cancers afford new opportunities. The unique cancer-initiating events and dependencies of many pediatric cancers, however, require additional pediatric-specific strategies. Research efforts to unravel the underlying biology of pediatric cancers, innovative clinical trial designs, model-informed drug development, extrapolation from adult data, addressing the unique considerations in pediatric patients, and use of pediatric appropriate formulations, should all be considered for efficient development and dosage optimization of anticancer drugs for pediatric patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982696PMC
http://dx.doi.org/10.1101/cshperspect.a041656DOI Listing

Publication Analysis

Top Keywords

drug development
16
pediatric patients
12
pediatric cancers
12
pediatric
9
pediatric cancer
8
cancer drug
8
regulatory landscape
8
anticancer drugs
8
drugs pediatric
8
development
6

Similar Publications

Early detection of focal cortical dysplasia (FCD) using brain MRI in young children presenting with drug-resistant epilepsy may facilitate prompt surgical treatment, resulting in better control of seizures and decreased associated cognitive difficulties. Characteristics of FCD described in the literature are predominantly based on MRI findings in a fully myelinated brain; therefore, changes occurring during early brain maturation are not well known. In this case report, we describe distinct MRI features of a FCD visualized best before completion of myelination of the cortex and subcortical white matter.

View Article and Find Full Text PDF

Effects of immersion bathing in Lactobacillus plantarum CLY-05 on the growth performance, non-specific immune enzyme activities and gut microbiota of Apostichopus japonicus.

PLoS One

December 2024

Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China.

In order to study the optimal use of Lactobacillus plantarum in sea cucumber (Apostichopus japonicus), 49 days feeding trial was conducted to determine the influence of immersion bathing in different concentrations of Lactobacillus plantarum CLY-05 on body weight gain rate and non-specific immune activities. The potential effect of CLY-05 on gut microbiota was also analyzed during the immersion bathing at the optimum concentration. The results showed that the body weight growth rate of all bathing groups was higher than that of control.

View Article and Find Full Text PDF

Background And Hypothesis: Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.

Mol Pharm

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!