The aim of this study was to investigate the underlying molecular mechanism behind the promotion of cell survival under conditions of glucose deprivation by l-lactate. To accomplish this, we performed tissue microarray and immunohistochemistry staining to analyze the correlation between the abundance of pan-Lysine lactylation and prognosis. In vivo evaluations of tumor growth were conducted using the KPC and nude mice xenograft tumor model. For mechanistic studies, multi-omics analysis, RNA interference, and site-directed mutagenesis techniques were utilized. Our findings robustly confirmed that l-lactate promotes cell survival under glucose deprivation conditions, primarily by relying on GLS1-mediated glutaminolysis to support mitochondrial respiration. Mechanistically, we discovered that l-lactate enhances the NMNAT1-mediated NAD salvage pathway while concurrently inactivating p-38 MAPK signaling and suppressing DDIT3 transcription. Notably, Pan-Kla abundance was significantly upregulated in patients with Pancreatic adenocarcinoma (PAAD) and associated with poor prognosis. We identified the 128th Lysine residue of NMNAT1 as a critical site for lactylation and revealed EP300 as a key lactyltransferase responsible for catalyzing lactylation. Importantly, we elucidated that lactylation of NMNAT1 enhances its nuclear localization and maintains enzymatic activity, thereby supporting the nuclear NAD salvage pathway and facilitating cancer growth. Finally, we demonstrated that the NMNAT1-dependent NAD salvage pathway promotes cell survival under glucose deprivation conditions and is reliant on the activity of Sirt1. Collectively, our study has unraveled a novel molecular mechanism by which l-lactate promotes cell survival under glucose deprivation conditions, presenting a promising strategy for targeting lactate and NAD metabolism in the treatment of PAAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2024.216806 | DOI Listing |
Cancers (Basel)
December 2024
Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD. Over expression of Nampt, the rate-limiting enzyme of the NAD biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
Approximately 50% of the patients with ulcerative colitis (UC) are primarily nonresponsive to anti-tumor necrosis factor (TNF) therapy or lose their responsiveness over time. The gut microbiota plays an important role in the resistance of UC to anti-TNF therapy; however, the underlying mechanism remains unknown. Here, it is found that the transplantation of gut fecal microbiota from patients with UC alters the diversity of the gut microbiota in dextran sulfate sodium-induced colitis mice and may affect the therapeutic responsiveness of mice to infliximab.
View Article and Find Full Text PDFMicrobiome
December 2024
College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
Nat Metab
December 2024
Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
As obligate intracellular pathogens, viruses activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of salvage nicotinamide adenine dinucleotide (NAD) synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses through unknown mechanisms. Here, we show that NAMPT restricts herpes simplex virus type 1 (HSV-1) replication by impeding the virion incorporation of viral proteins owing to its phosphoribosyl-hydrolase (phosphoribosylase) activity, which is independent of the role of NAMPT in NAD synthesis.
View Article and Find Full Text PDFNature
December 2024
Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!