Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.03.019 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China.
The increasing demand for high-performance strain sensors has driven the development of innovative composite systems. This study focused on enhancing the performance of composites by integrating liquid metal, carbon nanotubes, and polydimethylsiloxane (PDMS) in an innovative approach that involved advanced interface engineering, filler synergy, and in situ cross-linking of PDMS in solution. Surface modification of liquid metal with allyl disulfide and hydrogen-containing polydimethylsiloxane significantly improved its stability and dispersion within the polymer matrix.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Materials Science & Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China.
Electrochemical carbon dioxide reduction reaction (ECORR) to produce high value-added products is a promising and effective strategy for closing the artificial carbon cycle and achieving sustainable development of resource. However, catalyst structural reorganization and agglomeration caused by the reduction process will reduce the catalytic performance. In this study, a carbon nitrogen shell with cupper-doped (CNCu shell) catalyst was prepared using silicon dioxide (SiO) as a template.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tianjin University, school of materials science and engineering, No.135 Yaguan Road, Haihe Education Park, Jinnan District, 300350, Tianjin, CHINA.
P-block metal carbon-supported single-atom catalysts (C-SACs) have emerged as a promising candidate for high-performance room-temperature sodium-sulfur (RT Na-S) batteries, due to their high atom utilization and unique electronic structure. However, the ambiguous electronic-level understanding of Na-dominant s-p hybridization between sodium polysulfides (NaPSs) and p-block C-SACs limits the precise control of coordination environment tuning and electro-catalytic activity manipulation. Here, s-p orbital overlap degree (OOD) between the s orbitals of Na in NaPSs and the p orbitals of p-block C-SACs is proposed as a descriptor for sulfur reduction reaction (SRR) and sulfur oxidation reaction (SOR).
View Article and Find Full Text PDFFood Chem
January 2025
College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China. Electronic address:
ChemSusChem
September 2024
Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Catalysts with high catalytic activity and low production cost are important for industrial application of heterogeneous catalytic ozonation (HCO). In this study, we designed a carbon-coated aluminum oxide carrier (C-AlO) and reinforced it with Mn-Fe bimetal assemblages to prepare a high-performance catalyst Mn-Fe/C-AlO. The results showed that the carbon embedding significantly improved the abundance of surface oxygen functional groups, conductivity, and adsorption capacity of γ-AlO, while preserving its exceptional mechanical strength as a carrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!