Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cnidarians may dominate benthic communities, as in the case of coral reefs that foster biodiversity and provide important ecosystem services. Polyps may feed by predating mesozooplantkon and large motile prey, but many species further obtain autotrophic nutrients from photosymbiosis. Anthropogenic disturbance, such as the rise of seawater temperature and turbidity, can lead to the loss of symbionts, causing bleaching. Prolonged periods of bleaching can induce mortality events over vast areas. Heterotrophy may allow bleached cnidarians to survive for long periods of time. We tested the reinforcement of heterotrophic feeding of bleached polyps of Exaiptasia diaphana fed with both small zooplantkon and large prey, in order to evaluate if heterotrophy allows this species to compensate the reduction of autotrophy. Conversely to expected, heterotrophy was higher in unbleached polyps (+54% mesozooplankton prey and +11% large prey). The increase of heterotrophic intake may not be always used as a strategy to compensate autotrophic depletion in bleached polyps. Such a resilience strategy might be more species-specific than expected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2024.106435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!