Driven and spontaneous methods have been used to quantify the cerebral pressure-flow relationship via transfer function analysis (TFA). Commonly, TFA derived estimates are assessed using band averages within the very-low (0.02-0.07 Hz) and low (0.07-0.20 Hz) frequency during spontaneous oscillations but are quantified at frequencies of interest where blood pressure oscillations are driven (e.g., 0.05 and/or 0.10 Hz). Driven estimates more closely resemble the autoregulatory challenges individuals experience on a daily basis, while also eliciting higher levels of reliability. While driven estimates with point-estimates are not feasible for all clinical populations, these approaches increase the ability to understand pathophysiological changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318404 | PMC |
http://dx.doi.org/10.1177/0271678X231224504 | DOI Listing |
Macromol Rapid Commun
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFPurpose: The long scan times of quantitative MRI techniques make motion artifacts more likely. For MR-Fingerprinting-like approaches, this problem can be addressed with self-navigated retrospective motion correction based on reconstructions in a singular value decomposition (SVD) subspace. However, the SVD promotes high signal intensity in all tissues, which limits the contrast between tissue types and ultimately reduces the accuracy of registration.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
In this work, a cost-effective, scalable pneumatic silicone actuator array is introduced, designed to dynamically conform to the user's skin and thereby alleviate localised pressure within a prosthetic socket. The appropriate constitutive models for developing a finite element representation of these actuators are systematically identified, parametrised, and validated. Employing this computational framework, the surface deformation fields induced by 270 variations in soft actuator array design parameters under realistic load conditions are examined, achieving predictive accuracies within 70 µm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!