Schistosomiasis is a globally burdensome parasitic disease caused by flatworms (blood flukes) in the genus Schistosoma. The current standard treatment for schistosomiasis is the drug praziquantel, but there is an urgent need to advance novel interventions such as vaccines. Several glycolytic enzymes have been evaluated as vaccine targets for schistosomiasis, and data from these studies are reviewed here. Although these parasites are canonically considered to be intracellular, proteomic analysis has revealed that many schistosome glycolytic enzymes are additionally found at the host-interactive surface. We have recently found that the intravascular stage of Schistosoma mansoni (Sm) expresses the glycolytic enzyme phosphoglycerate mutase (PGM) on the tegumental surface. Live parasites display PGM activity, and suppression of PGM gene expression by RNA interference diminishes surface enzyme activity. Recombinant SmPGM (rSmPGM) can cleave its glycolytic substrate, 3-phosphoglycerate and can both bind to plasminogen and promote its conversion to an active form (plasmin) in vitro, suggesting a moonlighting role for this enzyme in regulating thrombosis in vivo. We found that antibodies in sera from chronically infected mice recognize rSmPGM. We also tested the protective efficacy of rSmPGM as a vaccine in the murine model. Although immunization generates high titers of anti-SmPGM antibodies (against both recombinant and native SmPGM), no significant differences in worm numbers were found between vaccinated and control animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1645/23-7 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.
Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.
J Physiol Sci
January 2025
Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902, Tokyo, Japan.
We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.
Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.
View Article and Find Full Text PDFMetabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!