TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Pathological mislocalization and aggregation of TDP-43 disrupt RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of techniques to design and evaluate peptide-based therapeutics that bind to pathological TDP-43 amyloid-like filament crystal structures and resist β sheet conversion. Our computational approaches, including biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations, were used to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our analyses identified a selection of promising peptides which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Molecular dynamics simulations provided further support for the structural and thermodynamic stability of these peptides, as they exhibited lower root-mean-square deviation and more favorable free energy landscapes over 300 ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for the rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both and experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959110 | PMC |
http://dx.doi.org/10.1021/acschemneuro.3c00659 | DOI Listing |
Co-existing neuropathological comorbidities have been repeatedly reported to be extremely common in subjects dying with dementia due to Alzheimer disease. As these are likely to be additive to cognitive impairment, and may not be affected by molecularly-specific AD therapeutics, they may cause significant inter-individual response heterogeneity amongst subjects in AD clinical trials. Furthermore, while originally noted for the oldest old, recent reports have now documented high neuropathological comorbidity prevalences in younger old AD subjects, who are more likely to be included in clinical trials.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Biological Sciences, Delaware State University, Dover, DE, United States.
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43).
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan; Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan. Electronic address:
Amyotrophic lateral sclerosis (ALS) is characterized by the mislocalization and abnormal deposition of TAR DNA-binding protein 43 (TDP-43). This protein plays important roles in RNA metabolism and transport in motor neurons and glial cells. In addition, abnormal iron accumulation and oxidative stress are observed in the brain and spinal cord of patients with ALS exhibiting TDP-43 pathology and in animal models of ALS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!