Background: Human brucellosis is a neglected, re-emerging, and endemic zoonosis in many countries. The debilitating and disabling potential of the disease is a warning about its morbidity, generating socioeconomic impact. This review aims to update the current evidence on the efficacy and safety of therapeutic options for human brucellosis using the network meta-analysis (NMA).
Methodology: A systematic search was conducted in four different databases by independent reviewers to assess overall therapy failure, adverse events, and time to defervescence associated with different therapies. Randomized clinical trials (RCTs) evaluating any therapeutic drug intervention were selected, excluding non-original studies or studies related to localized forms of the disease or with less than 10 participants. Data were analyzed by frequentist statistics through NMA by random effects model. The risk of bias and certainty of evidence was assessed, this review was registered at PROSPERO.
Results: Thirty-one (31) RCTs involving 4167 patients were included. Three networks of evidence were identified to evaluate the outcomes of interest. Triple therapy with doxycycline + streptomycin + hydroxychloroquine for 42 days (RR: 0.08; CI 95% 0.01-0.76) had a lower failure risk than the doxycycline + streptomycin regimen. Doxycycline + rifampicin had a higher risk of failure than doxycycline + streptomycin (RR: 1.96; CI 95% 1.27-3.01). No significant difference was observed between the regimens when analyzing the incidence of adverse events and time to defervescence. In general, most studies had a high risk of bias, and the results had a very low certainty of evidence.
Conclusions: This review confirmed the superiority of drugs already indicated for treating human brucellosis, such as the combination of doxycycline and aminoglycosides. The association of hydroxychloroquine to the dual regimen was identified as a potential strategy to prevent overall therapy failure, which is subject to confirmation in future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978012 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0012010 | DOI Listing |
BMC Microbiol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
Introduction: Brucellosis is still a significant emerging threat to public health, as it can infect humans, wild, domestic animals, and livestock. Hence, the current study aims to determine the frequency of canine brucellosis (CB), its relationship with clinical findings and reproductive disorders in kennel and farm dogs, and its importance on public health.
Materials And Methods: From January 2022 to December 2023, a total of 150 blood samples were taken from 100 adult dogs in breeding kennels and 50 shepherd dogs in breeding farms in Kerman, Iran.
Vet Med Sci
January 2025
Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
Background: Brucellosis is a zoonotic disease caused by Brucella spp., affecting various animals and humans, leading to significant economic and public health impacts. Traditional diagnostic methods, mainly serological, often fail to detect seronegative carriers, which continue to spread the infection.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute (RVSRI), Karaj, Iran.
Brucellosis, a zoonotic disease caused by Brucella spp. globally, is of great significance not only to livestock but also to public health. The most significant of the twelve species is Brucella melitensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!