Slow patient enrollment or failing to enroll the required number of patients is a disruptor of clinical trial timelines. To meet the planned trial recruitment, site selection strategies are used during clinical trial planning to identify research sites that are most likely to recruit a sufficiently high number of subjects within trial timelines. We developed a machine learning approach that outperforms baseline methods to rank research sites based on their expected recruitment in future studies. Indication level historical recruitment and real-world data are used in the machine learning approach to predict patient enrollment at site level. We define covariates based on published recruitment hypotheses and examine the effect of these covariates in predicting patient enrollment. We compare model performance of a linear and a non-linear machine learning model with common industry baselines that are constructed from historical recruitment data. Performance of the methodology is evaluated and reported for two disease indications, inflammatory bowel disease and multiple myeloma, both of which are actively being pursued in clinical development. We validate recruitment hypotheses by reviewing the covariates relationship with patient recruitment. For both indications, the non-linear model significantly outperforms the baselines and the linear model on the test set. In this paper, we present a machine learning approach to site selection that incorporates site-level recruitment and real-world patient data. The model ranks research sites by predicting the number of recruited patients and our results suggest that the model can improve site ranking compared to common industry baselines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927105 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300109 | PLOS |
Int J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFInt J Med Inform
January 2025
Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:
Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!