A brittle star is born: Ontogeny of luminous capabilities in Amphiura filiformis.

PLoS One

Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium.

Published: March 2024

Bioluminescence is the production of visible light by living organisms thanks to a chemical reaction, implying the oxidation of a substrate called luciferin catalyzed by an enzyme, the luciferase. The luminous brittle star Amphiura filiformis depends on coelenterazine (i.e., the most widespread luciferin in marine ecosystems) and a luciferase homologous to the cnidarian Renilla luciferase to produce blue flashes in the arm's spine. Only a few studies have focused on the ontogenic apparitions of bioluminescence in marine organisms. Like most ophiuroids, A. filiformis displays planktonic ophiopluteus larvae for which the ability to produce light was not investigated. This study aims to document the apparition of the luminous capabilities of this species during its ontogenic development, from the egg to settlement. Through biochemical assays, pharmacological stimulation, and Renilla-like luciferase immunohistological detection across different developing stages, we pointed out the emergence of the luminous capabilities after the ophiopluteus larval metamorphosis into a juvenile. In conclusion, we demonstrated that the larval pelagic stage of A. filiformis is not bioluminescent compared to juveniles and adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927081PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298185PLOS

Publication Analysis

Top Keywords

luminous capabilities
12
brittle star
8
amphiura filiformis
8
star born
4
born ontogeny
4
luminous
4
ontogeny luminous
4
capabilities amphiura
4
filiformis
4
filiformis bioluminescence
4

Similar Publications

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs).

View Article and Find Full Text PDF

Reactive template method for synthesis of water-soluble fluorescent silver nanoclusters supported on the surface of cellulose nanofibers.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.

There is an emerging quest for fabrication of water-soluble fluorescent silver nanoclusters (AgNCs) with long-lasting fluorescent properties and dimensional stability while being sustainable and functional. Thus, a well-known seed-mediated growth strategy has been developed to manufacture AgNCs supported onto carboxyl and aldehyde modified cellulose nanofiber (DATCNF) with ultra-small and intense fluorescence. The DATCNF acts as a reductant, template, and stabilizer while the protective ligand, 2-Mercaptonicotinic Acid (2-HMA), provides AgNCs with luminous characteristic and constrained size of 4.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!