Solid-State Photochemical Cascade Process Boosting Smart Ultralong Room-Temperature Phosphorescence in Bismuth Halides.

Angew Chem Int Ed Engl

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.

Published: May 2024

Molecular ultralong room-temperature phosphorescence (RTP), exhibiting multiple stimuli-responsive characteristics, has garnered considerable attention due to its potential applications in light-emitting devices, sensors, and information safety. This work proposes the utilization of photochemical cascade processes (PCCPs) in molecular crystals to design a stepwise smart RTP switch. By harnessing the sequential dynamics of photo-burst movement (induced by [2+2] photocycloaddition) and photochromism (induced by photogenerated radicals) in a bismuth (Bi)-based metal-organic halide (MOH), a continuous and photo-responsive ultralong RTP can be achieved. Furthermore, utilizing the same Bi-based MOH, diverse application demonstrations, such as multi-mode anti-counterfeiting and information encryption, can be easily implemented. This work thus not only serves as a proof-of-concept for the development of solid-state PCCPs that integrate photosalient effect and photochromism with light-chemical-mechanical energy conversion, but also lays the groundwork for designing new Bi-based MOHs with dynamically responsive ultralong RTP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202402634DOI Listing

Publication Analysis

Top Keywords

photochemical cascade
8
ultralong room-temperature
8
room-temperature phosphorescence
8
ultralong rtp
8
solid-state photochemical
4
cascade process
4
process boosting
4
boosting smart
4
ultralong
4
smart ultralong
4

Similar Publications

Sunlight-mediated environmental risks of tinidazole in seawater: A neglected ocular toxicity of photolysis mixtures.

J Hazard Mater

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China. Electronic address:

Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.

View Article and Find Full Text PDF

1,4-Dibenzodiazepines, an important component of nitrogen-containing heterocycles, are widely present in drugs. Herein, we developed a photochemical radical cascade cyclization reaction of isocyanides with α-carbonyl bromides under mild conditions. A sequence of 11-alkyl-substituted 1,4-dibenzodiazepines were produced in 53%-85% yields, demonstrating excellent tolerance towards various functional groups.

View Article and Find Full Text PDF

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Afterglow luminescence provides ultrasensitive optical detection by minimizing tissue autofluorescence and increasing the signal-to-noise ratio. However, due to the lack of suitable unimolecular afterglow scaffolds, current afterglow agents are nanocomposites containing multiple components with limited afterglow performance and have rarely been applied for cancer theranostics. Herein, we report the synthesis of a series of oxathiine-containing donor-acceptor block semiconducting polymers (PDCDs) and the observation of their high photoreactivity and strong near-infrared (NIR) afterglow luminescence.

View Article and Find Full Text PDF

We present a six-step cascade that converts 1,3-distyrylbenzenes (-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, ,-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!