Purpose: The purpose of this work is to observe the effect of the cavity design of the direct composite restoration on a real case of the patient's tooth structures after applying his mandibular kinematics with finite element analysis.
Materials And Methods: Four complex maxillomandibular models of teeth 17 and 47 were constructed from the patient's cone-beam acquisition and the patient's kinematic data recorded with Modjaw® were added. Different shapes and sizes of mesio-occluso-distal (M.O.D.) composite restorations were simulated, including the polymerization shrinkage of this material. Finite element analyses were used to observe the Von Mises stresses occurring during polymerization and mastication.
Results: The stresses were observed at the cavity margin and the amplitude of the stresses was higher when the enamel volume was lower. The reduction in occlusal enamel volume with the open-angle vestibular and palatal walls resulted in a greater increase in stresses observed on the structures.
Conclusions: The occlusal enamel is the area that bears the maximum masticatory stress, the loss of this enamel volume generates a much greater concentration of stress on the underlying structures. It is important to preserve as much enamel tissue as possible when designing a cavity for a direct composite restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11607/ijp.8824 | DOI Listing |
Sci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. Electronic address:
Ethnopharmacological Relevance: Huanglian Ganjiang decoction (HGD), which is composed of Chinese medicines with cold, warm, and astringent properties, has demonstrated significant therapeutic efficacy in ulcerative colitis (UC). However, the underlying mechanisms remain unclear, highlighting the need for a multi-faceted investigation. Disassembling prescriptions is a crucial approach for investigating compatibility mechanisms.
View Article and Find Full Text PDFJ Environ Manage
January 2025
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China. Electronic address:
Microorganisms play a vital role in restoring soil multifunctionality and rejuvenating degraded meadows. The availability of microbial resources, such as carbon, nitrogen, and phosphorus, often hinders this process. However, there is limited information on whether grass restoration can alleviate microbial resource limitations in damaged slopes of high-altitude regions.
View Article and Find Full Text PDFPhytomedicine
December 2024
College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, China. Electronic address:
Background: Metabolic syndrome (MS) refers to a cluster of metabolic disorders characterized by systemic chronic inflammation. Er Miao San (EMS) is a classic traditional Chinese medicine compound containing Phellodendron amurense and Atractylodis rhizome at a ratio of 1:1, proven to be effective against inflammatory diseases in clinical practice. Nevertheless, the precise functions of EMS in treating MS and its underlying mechanism have yet to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!