Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To investigate the effects of low tube voltage on coronary plaques and pericoronary fat assessment, and to compare their extent among various levels of low voltage.
Materials And Methods: Patients were recommended for high-pitch low-tube voltage coronary computed tomography angiography (CCTA), and they were included if they had poor image quality and were referred to a conventional CCTA. The patients were classified into a low-voltage group (with 70-kV, 80-kV, and 90-kV subgroups) and a conventional group (100/120 kV). Their total plaque and subcomponent volumes and pericoronary fat attenuation index (FAI) were measured.
Results: A total of 1002 image slices (from 65 patients and 74 plaques) were included, including 21, 31, 13, 4, and 61 patients in the 70-kV, 80-kV, 90-kV, 100-kV, and 120-kV groups respectively. The CT values of noncalcified plaques in the conventional and low-voltage groups were 54.6 ± 21.3 HU and 31.5 ± 22.6 HU, respectively (p < 0.05). Compared with the conventional group, the necrotic core and calcification volume were increased, and the fibrolipid volume, periplaque, and right coronary artery FAI were decreased in the low-voltage group and its subgroups (p < 0.001). The magnitude of changes in fibrous and calcification volumes increased in the 70-kV subgroup compared with that in the 90-kV subgroup (p < 0.05).
Conclusion: Low tube voltages, particularly of 70 kV, have a significant effect on coronary plaque and FAI. The effect of low voltage on plaque composition is characterized by a polarization pattern, i.e., a decrease in fibrolipid (medium density) and an increase in necrotic core (low density) and calcification (high density).
Clinical Relevance Statement: Our results highlight the comparability and repeatability of plaque and pericoronary fat assessments facilitated by the same or a similar tube voltage. It is necessary to carry out studies on the specificity threshold of low tube voltage at each level.
Key Points: • Low tube voltage had a significant effect on coronary plaque and pericoronary fat, particularly 70 kV. • The effect of low tube voltage on plaque composition shows the shift from medium-density mixed components to low- and high-density components. • It is necessary to correct the specificity threshold or attenuation difference for low tube voltage at each level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-024-10648-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!