Molecular photocatalysis has shown tremendous success in sustainable energy and chemical synthesis. However, visualizing the transient open-shell intermediates in photocatalysis is a significant and long-standing challenge. By employing our recently developed innovative time-resolved electron paramagnetic resonance technique, we directly observed all radicals and radical ions involved in the photocatalytic addition of pempidine to -butyl acrylate. The full picture of the photocatalytic cycle is vividly illustrated by the fine structures, chemical kinetics, and dynamic spin polarization of all open-shell intermediates directly observed in this prototypical system. Given the universality of this methodology, we believe it greatly empowers the research paradigm of direct observation in both photocatalysis and radical chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c14471 | DOI Listing |
J Am Chem Soc
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Ni-catalyzed multicomponent cross-couplings have emerged as a powerful strategy for efficiently constructing complex molecular architectures from a diverse array of organic halides. Despite its potential, selectively forming multiple chemical bonds in a single operation, particularly in the realm of cross-electrophile coupling catalysis, remains a significant challenge. In this study, we have developed a consecutive open-shell reductive Ni catalysis, enabling the formation of two geminal C(sp)-C(sp) bonds from two stereoelectronically similar C(sp)-I reactants in conjunction with a methylene electrophile.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Hydride abstraction represents a promising yet underexplored approach in the functionalization of C-H bonds. In this work, we report the oxidation of α-C-H bonds of ethers via oxoammonium catalysis using 3-chloroperbenzoic acid (CPBA) as the terminal chemical oxidant or by means of electrochemistry. Mechanistic studies revealed intricate equilibria and interconversion events between various catalytic intermediates in the presence of CPBA, which alone however was incompetent to drive catalytic turnover.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA.
Electronic structure methods built around double-electron excitations have a rich history in quantum chemistry. However, it seems to be the case that such methods are only suitable in particular situations and are not naturally equipped to simultaneously handle the variety of electron correlations that might be present in chemical systems. To this end, the current work seeks a computationally efficient, low-rank, "ultimate" coupled cluster method based exclusively on T2 and its products that can effectively emulate more "complete" methods that explicitly consider higher-rank, T2m, operators.
View Article and Find Full Text PDFChemistry
November 2024
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD, Amsterdam, The Netherlands.
We present the design and comprehensive investigation of stable para-substituted triarylamine-2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) radical ion pairs (RIPs) generated via single-electron transfer (SET). We quantified the degree of SET in both solution and solid phases, utilising a suite of spectroscopic techniques including IR, EPR, NMR, and single-crystal X-ray diffraction (SC-XRD). Our findings reveal that the extent of SET is significantly influenced by the nature of the substituents (MeO > Bu > Br) and the polarity of the solvent (MeCN > DCM > toluene).
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
Cyclodehydrogenation is an important ring-formation reaction that can directly produce planar-conjugated carbon-based nanomaterials from nonplanar molecules. However, inherently high C-H bond energy necessitates a high temperature during dehydrogenation, and the ubiquity of C - H bonds in molecules and small differences in their bond energies hinder the selectivity of dehydrogenation. Here, we report a room-temperature cyclodehydrogenation reaction on Au(111) via radical addition of open-shell resonance structures and demonstrate that radical addition significantly decreases cyclodehydrogenation temperature and further improves the chemoselectivity of dehydrogenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!