Importance: The use of ex vivo normothermic organ perfusion has enabled the use of deceased after circulatory death (DCD) donors for heart transplants. However, compared with conventional brain death donation, DCD heart transplantation performed with ex vivo organ perfusion involves an additional period of warm and cold ischemia, exposing the allograft to multiple bouts of ischemia reperfusion injury and may contribute to the high rates of extracorporeal membrane oxygenation usage after DCD heart transplantation.

Objective: To assess whether the beating heart method of DCD heart transplantation is safe and whether it has an acceptable rate of extracorporeal membrane oxygenation use postoperatively.

Design, Setting, And Participants: This case series includes 10 patients with end-stage heart failure undergoing DCD heart transplantation at a single academic medical center from October 1, 2022, to August 3, 2023. Data were analyzed from October 2022 to August 2023.

Interventions: Using a beating heart method of implantation of the donor allograft.

Main Outcomes And Measures: The main outcome was primary graft dysfunction necessitating postoperative initiation of mechanical circulatory support. Survival and initiation of mechanical circulatory support were secondary outcomes.

Results: In this case series, 10 consecutive patients underwent DCD heart transplantation via the beating heart method. Ten of 10 recipients were male (100%), the mean (SD) age was 51.2 (13.8) years, and 7 (70%) had idiopathic dilated cardiomyopathy. Ten patients (100%) survived, and 0 patients had initiation of extracorporeal membrane oxygenation postoperatively. No other mechanical circulatory support, including intra-aortic balloon pump, was initiated postoperatively. Graft survival was 100% (10 of 10 patients), and, at the time of publication, no patients have been listed for retransplantation.

Conclusions And Relevance: In this study of 10 patients undergoing heart transplantation, the beating heart implantation method for DCD heart transplantation was safe and may mitigate ischemia reperfusion injury, which may lead to lower rates of primary graft dysfunction necessitating extracorporeal membrane oxygenation. These results are relevant to institutions using DCD donors for heart transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928498PMC
http://dx.doi.org/10.1001/jamanetworkopen.2024.1828DOI Listing

Publication Analysis

Top Keywords

heart transplantation
28
dcd heart
24
beating heart
20
extracorporeal membrane
16
membrane oxygenation
16
heart
14
heart method
12
mechanical circulatory
12
circulatory support
12
circulatory death
8

Similar Publications

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.

View Article and Find Full Text PDF

METTL3: a multifunctional regulator in diseases.

Mol Cell Biochem

January 2025

Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

N6-methyladenosine (mA) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known mA methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of mA modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification.

View Article and Find Full Text PDF

The Ross procedure continues to be the best procedure to address unrepairable aortic valve pathology, especially in young adults. The Achilles heel of this procedure has been aortic root dilation and the potential need for a reoperation that may be associated with slightly increased risks in addition to the need for intervention on the pulmonary outflow tract. Modifying the Ross procedure by autograft inclusion inside a Dacron graft seems to have the potential advantage of stabilizing the autograft diameter, which may be associated with improved durability and decrease the need for future intervention.

View Article and Find Full Text PDF

Purpose Of Review: Recent advancements in genetic engineering have propelled the field of xenotransplantation from preclinical models to early compassionate use cases. As first-in-human clinical trials (FIHCTs) approach, we examine recent developments, ethical and regulatory challenges, immunological considerations, and the clinical infrastructure necessary for successful xenotransplantation trials.

Recent Findings: Expanded access transplants of pig hearts, kidneys, and livers have identified key challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!