In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-β-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963123 | PMC |
http://dx.doi.org/10.1093/molbev/msae054 | DOI Listing |
Physiol Rev
January 2025
Metabolism, Obesity, and Nutrition Lab, School of Health, Concordia University, Montréal, Québec, Canada.
Adult males and females have markedly different body composition, energy expenditure, and have different degrees of risk for metabolic diseases. A major aspect of metabolic regulation involves the appropriate storage and disposal of glucose and fatty acids. The use of sophisticated calorimetry, tracer, and imaging techniques have provided insight into the complex metabolism of these substrates showing that the regulation of these processes varies tremendously throughout the day, from the overnight fasting condition to meal ingestion, to the effects of physical activity.
View Article and Find Full Text PDFAge-related hearing loss affects one-third of the population over 65 years. However, the diverse pathologies underlying these heterogenous phenotypes complicate genetic studies. To overcome challenges associated with accurate phenotyping for older adults with hearing loss, we applied computational phenotyping approaches based on audiometrically measured hearing loss.
View Article and Find Full Text PDFForensic Sci Int Synerg
June 2025
Forensic Medicine and Toxicology Department, Faculty of Medicine, Ain Shams University, Elsarayat Street, 11517, Cairo, Egypt.
One of the main goals of forensic medicine is the successful identification of unidentified bodies. This is essential in mass disasters, criminal medicolegal investigations, and most cases of deaths with poorly preserved remains. This study aimed to assess the accuracy of anthropometric determination of handprint versus footprint dimensions for sex and stature estimation in a sample of the Egyptian population and to formulate equations for stature and sex determination using hand and footprint anthropometric measures.
View Article and Find Full Text PDFCurr Res Insect Sci
December 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance.
View Article and Find Full Text PDFEndocrinology
January 2025
Cardiopulmonary Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC.
Maternal exposure to ozone during implantation results in reduced fetal weight gain in rats. Offspring from ozone-exposed dams demonstrate sexually dimorphic risks to high-fat diet feeding in adolescence. To better understand the adolescent hepatic metabolic landscape following fetal growth restriction, RNA sequencing was performed to characterize the effects of ozone-induced fetal growth restriction on male and female offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!