Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photocatalysis represents an effective technology for environmental remediation. Herein, a series of Zn-doped BiOBr hollow microspheres are synthesized via one-pot solvothermal treatment of bismuth nitrate and dodecyl ammonium bromide in ethylene glycol along with a calculated amount of zinc acetate. Whereas the materials morphology and crystal structure remain virtually unchanged upon Zn-doping, the photocatalytic performance toward the degradation of ciprofloxacin is significantly improved under visible light irradiation. This is due to the formation of a unique band structure that facilitates the separation of photogenerated electron-hole pairs, reduced electron-transfer resistance, and enhanced electron mobility and carrier concentration. The best sample consists of a Zn doping amount of 1%, which leads to a 99.2% degradation rate of ciprofloxacin under visible photoirradiation for 30 min. The resulting photocatalysts also exhibit good stability and reusability, and the degradation intermediates exhibit reduced cytotoxicity compared to ciprofloxacin. These results highlight the unique potential of BiOBr-based photocatalysts for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c00155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!