transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution . Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF:Er@NaYF@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF:Er@NaYF (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease . This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity , which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh02189k | DOI Listing |
Biomed Pharmacother
January 2025
College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
Rett syndrome (RTT) is a neurological disorder caused by a mutation in the X-linked methyl-CpG binding protein 2 (MECP2), leading to cognitive and motor skill regression. Therapeutic strategies aimed at increasing brain-derived neurotrophic factor (BDNF) levels have been reported; however, BDNF treatment has limitations, including the inability to penetrate the blood-brain barrier, a short half-life, and potential for adverse effects when administered via intrathecal injection, necessitating novel therapeutic approaches. In this study, we focused on the adenosine A receptor (AR), which modulates BDNF and its downstream pathways, and investigated the therapeutic potential of CGS21680, an AR agonist, through in vitro and in vivo studies using R106W RTT model.
View Article and Find Full Text PDFMed J Malaysia
January 2025
National University of Malaysia, Faculty of Medicine, Department of Medicine, Kuala Lumpur, Malaysia.
Introduction: Stroke is a major cause of morbidity and mortality worldwide. While electroencephalography (EEG) offers valuable data on post-stroke brain activity, qualitative EEG assessments may be misinterpreted. Therefore, we examined the potential of quantitative EEG (qEEG) to identify key band frequencies that could serve as potential electrophysiological biomarkers in stroke patients.
View Article and Find Full Text PDFSoc Neurosci
January 2025
International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
This hyperscanning study explored the electrophysiological (EEG) patterns of dyads during a naturalistic persuasive interaction, in which the persuader had to convince the receiver that choosing a group solution was the most effective way to solve a group hypothetical everyday situation. Fifteen dyads composed of a persuader and a receiver were involved in a persuasive interaction while EEG data were recorded. EEG frequency bands (delta, theta, alpha, beta and gamma bands) were analyzed, first, considering the distinct role of the participants and, second, dividing the dyads according to the perceived effectiveness of persuasion.
View Article and Find Full Text PDFNat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.
View Article and Find Full Text PDFNeuron
January 2025
Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA. Electronic address:
Continuous sleep restores the brain and body, whereas fragmented sleep harms cognition and health. Microarousals (MAs), brief (3- to 15-s-long) wake intrusions into sleep, are clinical markers for various sleep disorders. Recent rodent studies show that MAs during healthy non-rapid eye movement (NREM) sleep are driven by infraslow fluctuations of noradrenaline (NA) in coordination with electrophysiological rhythms, vasomotor activity, cerebral blood volume, and glymphatic flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!