In this study, novel non-peripheral tetra-mercaptopyridine-substituted mono- and double-decker phthalocyanines (LuPc and LuPc2) containing lutetium(III) as a rare earth metal were synthesized and characterized using different spectroscopic techniques. ESR and electrochemical analyses were performed to support the sandwich structure of LuPc2. The factor was determined to be 2.00039 and the characteristic first reduction couple at 0.29 V indicated a reduction of the radical Pc ring of LuPc2. In addition, the UV-Vis-NIR spectra of LuPc2 in neutral, reduced, and oxidized states demonstrate its intrinsic π-radical nature in CHCl. The photophysicochemical properties of LuPc and LuPc2 were investigated in DMSO. It was found that mono-phthalocyanine (LuPc) is a more effective photosensitizer than double-decker (LuPc2) and metal-free (H2Pc) phthalocyanines based on a comparison of their photophysical and photochemical properties. The singlet oxygen quantum yields () of the synthesized LuPc and LuPc2 compounds were calculated to be 0.57 and 0.14, respectively, and the obtained results were compared with H2Pc ( = 0.04). Also, electrochemical measurements were performed to estimate their redox potentials and the results indicated the important electrochemical performance of double-decker phthalocyanine (LuPc2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt04341j | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne, UMR CNRS 6302, 9 Avenue A. Savary, F-21078 Dijon, France.
Ambipolar devices are a hot topic in research tables due to their unique advantage in reducing the size of the electrical system and enhancing its efficiency. Here, we report a bilayer heterojunction device constructed using octafluoro-vanadyl-phthalocyanine (VOFPc) and lutetium bisphthalocyanine (LuPc), which exhibits both p- and n-type behaviors under oxidizing (NO and O) and reducing gas (NH) species depending on the humidity level and temperature variations. The initial polarity of the device is identified as n-type by measuring a current decrease under oxygen exposure.
View Article and Find Full Text PDFACS Sens
July 2024
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne, UMR CNRS 6302, 9 avenue A. Savary, F-21078 Dijon, France.
Gas sensors based on ambipolar materials offer significant advantages in reducing the size of the analytical system and enhancing its efficiency. Here, bilayer heterojunction devices are constructed using different octafluorinated phthalocyanine complexes, with Zn and Co as metal centers, combined with a lutetium bisphthalocyanine complex (LuPc). Stable p-type behavior is observed for the ZnFPc/LuPc device under both electron-donating (NH) and -oxidizing (NO and O) gaseous species, while the CoFPc/LuPc device exhibits n-type behavior under reducing gases and p-type behavior under oxidizing gases.
View Article and Find Full Text PDFDalton Trans
March 2024
Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli, Turkey.
In this study, novel non-peripheral tetra-mercaptopyridine-substituted mono- and double-decker phthalocyanines (LuPc and LuPc2) containing lutetium(III) as a rare earth metal were synthesized and characterized using different spectroscopic techniques. ESR and electrochemical analyses were performed to support the sandwich structure of LuPc2. The factor was determined to be 2.
View Article and Find Full Text PDFACS Sens
February 2024
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France.
π-Extended porphyrins represent an attractive class of organic compounds because of their unique photophysical, optoelectronic, and physicochemical properties. Herein, cross-conjugated (Ace-PQ-Ni) and linear-conjugated (AM6) porphyrins are used to build double-layer heterojunction devices by combining them with a lutetium bisphthalocyanine complex (LuPc). The heterojunction effect at the porphyrin-phthalocyanine interface plays a key role in the charge transport properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France.
Modulation of interfacial conductivity in organic heterostructures is a highly promising strategy to improve the performance of electronic devices. In this endeavor, the present work reports the fabrication of a bilayer heterojunction device, combining octafluoro copper phthalocyanine (CuFPc) and lutetium bis-phthalocyanine (LuPc) and tunes the charge transport at the Cu(FPc)-(LuPc) interface by aryl electrografting on the device electrode to improve the device NH-sensing properties. Dimethoxybenzene (DMB) and tetrafluoro benzene (TFB) electrografted by an aryldiazonium electroreduction method form a few-nanometer-thick organic film on ITO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!